Theory FSet

theory FSet
imports Multiset Quotient_List
(*  Title:      HOL/Quotient_Examples/FSet.thy
    Author:     Cezary Kaliszyk, TU Munich
    Author:     Christian Urban, TU Munich

Type of finite sets.
*)

(********************************************************************
  WARNING: There is a formalization of 'a fset as a subtype of sets in
  HOL/Library/FSet.thy using Lifting/Transfer. The user should use
  that file rather than this file unless there are some very specific
  reasons.
*********************************************************************)

theory FSet
imports "~~/src/HOL/Library/Multiset" "~~/src/HOL/Library/Quotient_List"
begin

text {* 
  The type of finite sets is created by a quotient construction
  over lists. The definition of the equivalence:
*}

definition
  list_eq :: "'a list ⇒ 'a list ⇒ bool" (infix "≈" 50)
where
  [simp]: "xs ≈ ys ⟷ set xs = set ys"

lemma list_eq_reflp:
  "reflp list_eq"
  by (auto intro: reflpI)

lemma list_eq_symp:
  "symp list_eq"
  by (auto intro: sympI)

lemma list_eq_transp:
  "transp list_eq"
  by (auto intro: transpI)

lemma list_eq_equivp:
  "equivp list_eq"
  by (auto intro: equivpI list_eq_reflp list_eq_symp list_eq_transp)

text {* The @{text fset} type *}

quotient_type
  'a fset = "'a list" / "list_eq"
  by (rule list_eq_equivp)

text {* 
  Definitions for sublist, cardinality, 
  intersection, difference and respectful fold over 
  lists.
*}

declare List.member_def [simp]

definition
  sub_list :: "'a list ⇒ 'a list ⇒ bool"
where 
  [simp]: "sub_list xs ys ⟷ set xs ⊆ set ys"

definition
  card_list :: "'a list ⇒ nat"
where
  [simp]: "card_list xs = card (set xs)"

definition
  inter_list :: "'a list ⇒ 'a list ⇒ 'a list"
where
  [simp]: "inter_list xs ys = [x ← xs. x ∈ set xs ∧ x ∈ set ys]"

definition
  diff_list :: "'a list ⇒ 'a list ⇒ 'a list"
where
  [simp]: "diff_list xs ys = [x ← xs. x ∉ set ys]"

definition
  rsp_fold :: "('a ⇒ 'b ⇒ 'b) ⇒ bool"
where
  "rsp_fold f ⟷ (∀u v. f u ∘ f v = f v ∘ f u)"

lemma rsp_foldI:
  "(⋀u v. f u ∘ f v = f v ∘ f u) ⟹ rsp_fold f"
  by (simp add: rsp_fold_def)

lemma rsp_foldE:
  assumes "rsp_fold f"
  obtains "f u ∘ f v = f v ∘ f u"
  using assms by (simp add: rsp_fold_def)

definition
  fold_once :: "('a ⇒ 'b ⇒ 'b) ⇒ 'a list ⇒ 'b ⇒ 'b"
where
  "fold_once f xs = (if rsp_fold f then fold f (remdups xs) else id)"

lemma fold_once_default [simp]:
  "¬ rsp_fold f ⟹ fold_once f xs = id"
  by (simp add: fold_once_def)

lemma fold_once_fold_remdups:
  "rsp_fold f ⟹ fold_once f xs = fold f (remdups xs)"
  by (simp add: fold_once_def)


section {* Quotient composition lemmas *}

lemma list_all2_refl':
  assumes q: "equivp R"
  shows "(list_all2 R) r r"
  by (rule list_all2_refl) (metis equivp_def q)

lemma compose_list_refl:
  assumes q: "equivp R"
  shows "(list_all2 R OOO op ≈) r r"
proof
  have *: "r ≈ r" by (rule equivp_reflp[OF fset_equivp])
  show "list_all2 R r r" by (rule list_all2_refl'[OF q])
  with * show "(op ≈ OO list_all2 R) r r" ..
qed

lemma map_list_eq_cong: "b ≈ ba ⟹ map f b ≈ map f ba"
  by (simp only: list_eq_def set_map)

lemma quotient_compose_list_g:
  assumes q: "Quotient3 R Abs Rep"
  and     e: "equivp R"
  shows  "Quotient3 ((list_all2 R) OOO (op ≈))
    (abs_fset ∘ (map Abs)) ((map Rep) ∘ rep_fset)"
  unfolding Quotient3_def comp_def
proof (intro conjI allI)
  fix a r s
  show "abs_fset (map Abs (map Rep (rep_fset a))) = a"
    by (simp add: abs_o_rep[OF q] Quotient3_abs_rep[OF Quotient3_fset] List.map.id)
  have b: "list_all2 R (map Rep (rep_fset a)) (map Rep (rep_fset a))"
    by (rule list_all2_refl'[OF e])
  have c: "(op ≈ OO list_all2 R) (map Rep (rep_fset a)) (map Rep (rep_fset a))"
    by (rule, rule equivp_reflp[OF fset_equivp]) (rule b)
  show "(list_all2 R OOO op ≈) (map Rep (rep_fset a)) (map Rep (rep_fset a))"
    by (rule, rule list_all2_refl'[OF e]) (rule c)
  show "(list_all2 R OOO op ≈) r s = ((list_all2 R OOO op ≈) r r ∧
        (list_all2 R OOO op ≈) s s ∧ abs_fset (map Abs r) = abs_fset (map Abs s))"
  proof (intro iffI conjI)
    show "(list_all2 R OOO op ≈) r r" by (rule compose_list_refl[OF e])
    show "(list_all2 R OOO op ≈) s s" by (rule compose_list_refl[OF e])
  next
    assume a: "(list_all2 R OOO op ≈) r s"
    then have b: "map Abs r ≈ map Abs s"
    proof (elim relcomppE)
      fix b ba
      assume c: "list_all2 R r b"
      assume d: "b ≈ ba"
      assume e: "list_all2 R ba s"
      have f: "map Abs r = map Abs b"
        using Quotient3_rel[OF list_quotient3[OF q]] c by blast
      have "map Abs ba = map Abs s"
        using Quotient3_rel[OF list_quotient3[OF q]] e by blast
      then have g: "map Abs s = map Abs ba" by simp
      then show "map Abs r ≈ map Abs s" using d f map_list_eq_cong by simp
    qed
    then show "abs_fset (map Abs r) = abs_fset (map Abs s)"
      using Quotient3_rel[OF Quotient3_fset] by blast
  next
    assume a: "(list_all2 R OOO op ≈) r r ∧ (list_all2 R OOO op ≈) s s
      ∧ abs_fset (map Abs r) = abs_fset (map Abs s)"
    then have s: "(list_all2 R OOO op ≈) s s" by simp
    have d: "map Abs r ≈ map Abs s"
      by (subst Quotient3_rel [OF Quotient3_fset, symmetric]) (simp add: a)
    have b: "map Rep (map Abs r) ≈ map Rep (map Abs s)"
      by (rule map_list_eq_cong[OF d])
    have y: "list_all2 R (map Rep (map Abs s)) s"
      by (fact rep_abs_rsp_left[OF list_quotient3[OF q], OF list_all2_refl'[OF e, of s]])
    have c: "(op ≈ OO list_all2 R) (map Rep (map Abs r)) s"
      by (rule relcomppI) (rule b, rule y)
    have z: "list_all2 R r (map Rep (map Abs r))"
      by (fact rep_abs_rsp[OF list_quotient3[OF q], OF list_all2_refl'[OF e, of r]])
    then show "(list_all2 R OOO op ≈) r s"
      using a c relcomppI by simp
  qed
qed

lemma quotient_compose_list[quot_thm]:
  shows  "Quotient3 ((list_all2 op ≈) OOO (op ≈))
    (abs_fset ∘ (map abs_fset)) ((map rep_fset) ∘ rep_fset)"
  by (rule quotient_compose_list_g, rule Quotient3_fset, rule list_eq_equivp)


section {* Quotient definitions for fsets *}


subsection {* Finite sets are a bounded, distributive lattice with minus *}

instantiation fset :: (type) "{bounded_lattice_bot, distrib_lattice, minus}"
begin

quotient_definition
  "bot :: 'a fset" 
  is "Nil :: 'a list" done

abbreviation
  empty_fset  ("{||}")
where
  "{||} ≡ bot :: 'a fset"

quotient_definition
  "less_eq_fset :: ('a fset ⇒ 'a fset ⇒ bool)"
  is "sub_list :: ('a list ⇒ 'a list ⇒ bool)" by simp

abbreviation
  subset_fset :: "'a fset ⇒ 'a fset ⇒ bool" (infix "|⊆|" 50)
where
  "xs |⊆| ys ≡ xs ≤ ys"

definition
  less_fset :: "'a fset ⇒ 'a fset ⇒ bool"
where  
  "xs < ys ≡ xs ≤ ys ∧ xs ≠ (ys::'a fset)"

abbreviation
  psubset_fset :: "'a fset ⇒ 'a fset ⇒ bool" (infix "|⊂|" 50)
where
  "xs |⊂| ys ≡ xs < ys"

quotient_definition
  "sup :: 'a fset ⇒ 'a fset ⇒ 'a fset"
  is "append :: 'a list ⇒ 'a list ⇒ 'a list" by simp

abbreviation
  union_fset (infixl "|∪|" 65)
where
  "xs |∪| ys ≡ sup xs (ys::'a fset)"

quotient_definition
  "inf :: 'a fset ⇒ 'a fset ⇒ 'a fset"
  is "inter_list :: 'a list ⇒ 'a list ⇒ 'a list" by simp

abbreviation
  inter_fset (infixl "|∩|" 65)
where
  "xs |∩| ys ≡ inf xs (ys::'a fset)"

quotient_definition
  "minus :: 'a fset ⇒ 'a fset ⇒ 'a fset"
  is "diff_list :: 'a list ⇒ 'a list ⇒ 'a list" by fastforce

instance
proof
  fix x y z :: "'a fset"
  show "x |⊂| y ⟷ x |⊆| y ∧ ¬ y |⊆| x"
    by (unfold less_fset_def, descending) auto
  show "x |⊆| x" by (descending) (simp)
  show "{||} |⊆| x" by (descending) (simp)
  show "x |⊆| x |∪| y" by (descending) (simp)
  show "y |⊆| x |∪| y" by (descending) (simp)
  show "x |∩| y |⊆| x" by (descending) (auto)
  show "x |∩| y |⊆| y" by (descending) (auto)
  show "x |∪| (y |∩| z) = x |∪| y |∩| (x |∪| z)" 
    by (descending) (auto)
next
  fix x y z :: "'a fset"
  assume a: "x |⊆| y"
  assume b: "y |⊆| z"
  show "x |⊆| z" using a b by (descending) (simp)
next
  fix x y :: "'a fset"
  assume a: "x |⊆| y"
  assume b: "y |⊆| x"
  show "x = y" using a b by (descending) (auto)
next
  fix x y z :: "'a fset"
  assume a: "y |⊆| x"
  assume b: "z |⊆| x"
  show "y |∪| z |⊆| x" using a b by (descending) (simp)
next
  fix x y z :: "'a fset"
  assume a: "x |⊆| y"
  assume b: "x |⊆| z"
  show "x |⊆| y |∩| z" using a b by (descending) (auto)
qed

end


subsection {* Other constants for fsets *}

quotient_definition
  "insert_fset :: 'a ⇒ 'a fset ⇒ 'a fset"
  is "Cons" by auto

syntax
  "_insert_fset"     :: "args => 'a fset"  ("{|(_)|}")

translations
  "{|x, xs|}" == "CONST insert_fset x {|xs|}"
  "{|x|}"     == "CONST insert_fset x {||}"

quotient_definition
  fset_member
where
  "fset_member :: 'a fset ⇒ 'a ⇒ bool" is "List.member" by fastforce

abbreviation
  in_fset :: "'a ⇒ 'a fset ⇒ bool" (infix "|∈|" 50)
where
  "x |∈| S ≡ fset_member S x"

abbreviation
  notin_fset :: "'a ⇒ 'a fset ⇒ bool" (infix "|∉|" 50)
where
  "x |∉| S ≡ ¬ (x |∈| S)"


subsection {* Other constants on the Quotient Type *}

quotient_definition
  "card_fset :: 'a fset ⇒ nat"
  is card_list by simp

quotient_definition
  "map_fset :: ('a ⇒ 'b) ⇒ 'a fset ⇒ 'b fset"
  is map by simp

quotient_definition
  "remove_fset :: 'a ⇒ 'a fset ⇒ 'a fset"
  is removeAll by simp

quotient_definition
  "fset :: 'a fset ⇒ 'a set"
  is "set" by simp

lemma fold_once_set_equiv:
  assumes "xs ≈ ys"
  shows "fold_once f xs = fold_once f ys"
proof (cases "rsp_fold f")
  case False then show ?thesis by simp
next
  case True
  then have "⋀x y. x ∈ set (remdups xs) ⟹ y ∈ set (remdups xs) ⟹ f x ∘ f y = f y ∘ f x"
    by (rule rsp_foldE)
  moreover from assms have "mset (remdups xs) = mset (remdups ys)"
    by (simp add: set_eq_iff_mset_remdups_eq)
  ultimately have "fold f (remdups xs) = fold f (remdups ys)"
    by (rule fold_multiset_equiv)
  with True show ?thesis by (simp add: fold_once_fold_remdups)
qed

quotient_definition
  "fold_fset :: ('a ⇒ 'b ⇒ 'b) ⇒ 'a fset ⇒ 'b ⇒ 'b"
  is fold_once by (rule fold_once_set_equiv)

lemma concat_rsp_pre:
  assumes a: "list_all2 op ≈ x x'"
  and     b: "x' ≈ y'"
  and     c: "list_all2 op ≈ y' y"
  and     d: "∃x∈set x. xa ∈ set x"
  shows "∃x∈set y. xa ∈ set x"
proof -
  obtain xb where e: "xb ∈ set x" and f: "xa ∈ set xb" using d by auto
  have "∃y. y ∈ set x' ∧ xb ≈ y" by (rule list_all2_find_element[OF e a])
  then obtain ya where h: "ya ∈ set x'" and i: "xb ≈ ya" by auto
  have "ya ∈ set y'" using b h by simp
  then have "∃yb. yb ∈ set y ∧ ya ≈ yb" using c by (rule list_all2_find_element)
  then show ?thesis using f i by auto
qed

quotient_definition
  "concat_fset :: ('a fset) fset ⇒ 'a fset"
  is concat 
proof (elim relcomppE)
fix a b ba bb
  assume a: "list_all2 op ≈ a ba"
  with list_symp [OF list_eq_symp] have a': "list_all2 op ≈ ba a" by (rule sympE)
  assume b: "ba ≈ bb"
  with list_eq_symp have b': "bb ≈ ba" by (rule sympE)
  assume c: "list_all2 op ≈ bb b"
  with list_symp [OF list_eq_symp] have c': "list_all2 op ≈ b bb" by (rule sympE)
  have "∀x. (∃xa∈set a. x ∈ set xa) = (∃xa∈set b. x ∈ set xa)" 
  proof
    fix x
    show "(∃xa∈set a. x ∈ set xa) = (∃xa∈set b. x ∈ set xa)" 
    proof
      assume d: "∃xa∈set a. x ∈ set xa"
      show "∃xa∈set b. x ∈ set xa" by (rule concat_rsp_pre[OF a b c d])
    next
      assume e: "∃xa∈set b. x ∈ set xa"
      show "∃xa∈set a. x ∈ set xa" by (rule concat_rsp_pre[OF c' b' a' e])
    qed
  qed
  then show "concat a ≈ concat b" by auto
qed

quotient_definition
  "filter_fset :: ('a ⇒ bool) ⇒ 'a fset ⇒ 'a fset"
  is filter by force


subsection {* Compositional respectfulness and preservation lemmas *}

lemma Nil_rsp2 [quot_respect]: 
  shows "(list_all2 op ≈ OOO op ≈) Nil Nil"
  by (rule compose_list_refl, rule list_eq_equivp)

lemma Cons_rsp2 [quot_respect]:
  shows "(op ≈ ===> list_all2 op ≈ OOO op ≈ ===> list_all2 op ≈ OOO op ≈) Cons Cons"
  apply (auto intro!: rel_funI)
  apply (rule_tac b="x # b" in relcomppI)
  apply auto
  apply (rule_tac b="x # ba" in relcomppI)
  apply auto
  done

lemma Nil_prs2 [quot_preserve]:
  assumes "Quotient3 R Abs Rep"
  shows "(Abs ∘ map f) [] = Abs []"
  by simp

lemma Cons_prs2 [quot_preserve]:
  assumes q: "Quotient3 R1 Abs1 Rep1"
  and     r: "Quotient3 R2 Abs2 Rep2"
  shows "(Rep1 ---> (map Rep1 ∘ Rep2) ---> (Abs2 ∘ map Abs1)) (op #) = (id ---> Rep2 ---> Abs2) (op #)"
  by (auto simp add: fun_eq_iff comp_def Quotient3_abs_rep [OF q])

lemma append_prs2 [quot_preserve]:
  assumes q: "Quotient3 R1 Abs1 Rep1"
  and     r: "Quotient3 R2 Abs2 Rep2"
  shows "((map Rep1 ∘ Rep2) ---> (map Rep1 ∘ Rep2) ---> (Abs2 ∘ map Abs1)) op @ =
    (Rep2 ---> Rep2 ---> Abs2) op @"
  by (simp add: fun_eq_iff abs_o_rep[OF q] List.map.id)

lemma list_all2_app_l:
  assumes a: "reflp R"
  and b: "list_all2 R l r"
  shows "list_all2 R (z @ l) (z @ r)"
  using a b by (induct z) (auto elim: reflpE)

lemma append_rsp2_pre0:
  assumes a:"list_all2 op ≈ x x'"
  shows "list_all2 op ≈ (x @ z) (x' @ z)"
  using a apply (induct x x' rule: list_induct2')
  by simp_all (rule list_all2_refl'[OF list_eq_equivp])

lemma append_rsp2_pre1:
  assumes a:"list_all2 op ≈ x x'"
  shows "list_all2 op ≈ (z @ x) (z @ x')"
  using a apply (induct x x' arbitrary: z rule: list_induct2')
  apply (rule list_all2_refl'[OF list_eq_equivp])
  apply (simp_all del: list_eq_def)
  apply (rule list_all2_app_l)
  apply (simp_all add: reflpI)
  done

lemma append_rsp2_pre:
  assumes "list_all2 op ≈ x x'"
    and "list_all2 op ≈ z z'"
  shows "list_all2 op ≈ (x @ z) (x' @ z')"
  using assms by (rule list_all2_appendI)

lemma compositional_rsp3:
  assumes "(R1 ===> R2 ===> R3) C C" and "(R4 ===> R5 ===> R6) C C"
  shows "(R1 OOO R4 ===> R2 OOO R5 ===> R3 OOO R6) C C"
  by (auto intro!: rel_funI)
     (metis (full_types) assms rel_funE relcomppI)

lemma append_rsp2 [quot_respect]:
  "(list_all2 op ≈ OOO op ≈ ===> list_all2 op ≈ OOO op ≈ ===> list_all2 op ≈ OOO op ≈) append append"
  by (intro compositional_rsp3)
     (auto intro!: rel_funI simp add: append_rsp2_pre)

lemma map_rsp2 [quot_respect]:
  "((op ≈ ===> op ≈) ===> list_all2 op ≈ OOO op ≈ ===> list_all2 op ≈ OOO op ≈) map map"
proof (auto intro!: rel_funI)
  fix f f' :: "'a list ⇒ 'b list"
  fix xa ya x y :: "'a list list"
  assume fs: "(op ≈ ===> op ≈) f f'" and x: "list_all2 op ≈ xa x" and xy: "set x = set y" and y: "list_all2 op ≈ y ya"
  have a: "(list_all2 op ≈) (map f xa) (map f x)"
    using x
    by (induct xa x rule: list_induct2')
       (simp_all, metis fs rel_funE list_eq_def)
  have b: "set (map f x) = set (map f y)"
    using xy fs
    by (induct x y rule: list_induct2')
       (simp_all, metis image_insert)
  have c: "(list_all2 op ≈) (map f y) (map f' ya)"
    using y fs
    by (induct y ya rule: list_induct2')
       (simp_all, metis apply_rsp' list_eq_def)
  show "(list_all2 op ≈ OOO op ≈) (map f xa) (map f' ya)"
    by (metis a b c list_eq_def relcomppI)
qed

lemma map_prs2 [quot_preserve]:
  shows "((abs_fset ---> rep_fset) ---> (map rep_fset ∘ rep_fset) ---> abs_fset ∘ map abs_fset) map = (id ---> rep_fset ---> abs_fset) map"
  by (auto simp add: fun_eq_iff)
     (simp only: map_map[symmetric] map_prs_aux[OF Quotient3_fset Quotient3_fset])

section {* Lifted theorems *}

subsection {* fset *}

lemma fset_simps [simp]:
  shows "fset {||} = {}"
  and   "fset (insert_fset x S) = insert x (fset S)"
  by (descending, simp)+

lemma finite_fset [simp]: 
  shows "finite (fset S)"
  by (descending) (simp)

lemma fset_cong:
  shows "fset S = fset T ⟷ S = T"
  by (descending) (simp)

lemma filter_fset [simp]:
  shows "fset (filter_fset P xs) = Collect P ∩ fset xs"
  by (descending) (auto)

lemma remove_fset [simp]: 
  shows "fset (remove_fset x xs) = fset xs - {x}"
  by (descending) (simp)

lemma inter_fset [simp]: 
  shows "fset (xs |∩| ys) = fset xs ∩ fset ys"
  by (descending) (auto)

lemma union_fset [simp]: 
  shows "fset (xs |∪| ys) = fset xs ∪ fset ys"
  by (lifting set_append)

lemma minus_fset [simp]: 
  shows "fset (xs - ys) = fset xs - fset ys"
  by (descending) (auto)


subsection {* in_fset *}

lemma in_fset: 
  shows "x |∈| S ⟷ x ∈ fset S"
  by descending simp

lemma notin_fset: 
  shows "x |∉| S ⟷ x ∉ fset S"
  by (simp add: in_fset)

lemma notin_empty_fset: 
  shows "x |∉| {||}"
  by (simp add: in_fset)

lemma fset_eq_iff:
  shows "S = T ⟷ (∀x. (x |∈| S) = (x |∈| T))"
  by descending auto

lemma none_in_empty_fset:
  shows "(∀x. x |∉| S) ⟷ S = {||}"
  by descending simp


subsection {* insert_fset *}

lemma in_insert_fset_iff [simp]:
  shows "x |∈| insert_fset y S ⟷ x = y ∨ x |∈| S"
  by descending simp

lemma
  shows insert_fsetI1: "x |∈| insert_fset x S"
  and   insert_fsetI2: "x |∈| S ⟹ x |∈| insert_fset y S"
  by simp_all

lemma insert_absorb_fset [simp]:
  shows "x |∈| S ⟹ insert_fset x S = S"
  by (descending) (auto)

lemma empty_not_insert_fset[simp]:
  shows "{||} ≠ insert_fset x S"
  and   "insert_fset x S ≠ {||}"
  by (descending, simp)+

lemma insert_fset_left_comm:
  shows "insert_fset x (insert_fset y S) = insert_fset y (insert_fset x S)"
  by (descending) (auto)

lemma insert_fset_left_idem:
  shows "insert_fset x (insert_fset x S) = insert_fset x S"
  by (descending) (auto)

lemma singleton_fset_eq[simp]:
  shows "{|x|} = {|y|} ⟷ x = y"
  by (descending) (auto)

lemma in_fset_mdef:
  shows "x |∈| F ⟷ x |∉| (F - {|x|}) ∧ F = insert_fset x (F - {|x|})"
  by (descending) (auto)


subsection {* union_fset *}

lemmas [simp] =
  sup_bot_left[where 'a="'a fset"]
  sup_bot_right[where 'a="'a fset"]

lemma union_insert_fset [simp]:
  shows "insert_fset x S |∪| T = insert_fset x (S |∪| T)"
  by (lifting append.simps(2))

lemma singleton_union_fset_left:
  shows "{|a|} |∪| S = insert_fset a S"
  by simp

lemma singleton_union_fset_right:
  shows "S |∪| {|a|} = insert_fset a S"
  by (subst sup.commute) simp

lemma in_union_fset:
  shows "x |∈| S |∪| T ⟷ x |∈| S ∨ x |∈| T"
  by (descending) (simp)


subsection {* minus_fset *}

lemma minus_in_fset: 
  shows "x |∈| (xs - ys) ⟷ x |∈| xs ∧ x |∉| ys"
  by (descending) (simp)

lemma minus_insert_fset: 
  shows "insert_fset x xs - ys = (if x |∈| ys then xs - ys else insert_fset x (xs - ys))"
  by (descending) (auto)

lemma minus_insert_in_fset[simp]: 
  shows "x |∈| ys ⟹ insert_fset x xs - ys = xs - ys"
  by (simp add: minus_insert_fset)

lemma minus_insert_notin_fset[simp]: 
  shows "x |∉| ys ⟹ insert_fset x xs - ys = insert_fset x (xs - ys)"
  by (simp add: minus_insert_fset)

lemma in_minus_fset: 
  shows "x |∈| F - S ⟹ x |∉| S"
  unfolding in_fset minus_fset
  by blast

lemma notin_minus_fset: 
  shows "x |∈| S ⟹ x |∉| F - S"
  unfolding in_fset minus_fset
  by blast


subsection {* remove_fset *}

lemma in_remove_fset:
  shows "x |∈| remove_fset y S ⟷ x |∈| S ∧ x ≠ y"
  by (descending) (simp)

lemma notin_remove_fset:
  shows "x |∉| remove_fset x S"
  by (descending) (simp)

lemma notin_remove_ident_fset:
  shows "x |∉| S ⟹ remove_fset x S = S"
  by (descending) (simp)

lemma remove_fset_cases:
  shows "S = {||} ∨ (∃x. x |∈| S ∧ S = insert_fset x (remove_fset x S))"
  by (descending) (auto simp add: insert_absorb)
  

subsection {* inter_fset *}

lemma inter_empty_fset_l:
  shows "{||} |∩| S = {||}"
  by simp

lemma inter_empty_fset_r:
  shows "S |∩| {||} = {||}"
  by simp

lemma inter_insert_fset:
  shows "insert_fset x S |∩| T = (if x |∈| T then insert_fset x (S |∩| T) else S |∩| T)"
  by (descending) (auto)

lemma in_inter_fset:
  shows "x |∈| (S |∩| T) ⟷ x |∈| S ∧ x |∈| T"
  by (descending) (simp)


subsection {* subset_fset and psubset_fset *}

lemma subset_fset: 
  shows "xs |⊆| ys ⟷ fset xs ⊆ fset ys"
  by (descending) (simp)

lemma psubset_fset: 
  shows "xs |⊂| ys ⟷ fset xs ⊂ fset ys"
  unfolding less_fset_def 
  by (descending) (auto)

lemma subset_insert_fset:
  shows "(insert_fset x xs) |⊆| ys ⟷ x |∈| ys ∧ xs |⊆| ys"
  by (descending) (simp)

lemma subset_in_fset: 
  shows "xs |⊆| ys = (∀x. x |∈| xs ⟶ x |∈| ys)"
  by (descending) (auto)

lemma subset_empty_fset:
  shows "xs |⊆| {||} ⟷ xs = {||}"
  by (descending) (simp)

lemma not_psubset_empty_fset: 
  shows "¬ xs |⊂| {||}"
  by (metis fset_simps(1) psubset_fset not_psubset_empty)


subsection {* map_fset *}

lemma map_fset_simps [simp]:
   shows "map_fset f {||} = {||}"
  and   "map_fset f (insert_fset x S) = insert_fset (f x) (map_fset f S)"
  by (descending, simp)+

lemma map_fset_image [simp]:
  shows "fset (map_fset f S) = f ` (fset S)"
  by (descending) (simp)

lemma inj_map_fset_cong:
  shows "inj f ⟹ map_fset f S = map_fset f T ⟷ S = T"
  by (descending) (metis inj_vimage_image_eq list_eq_def set_map)

lemma map_union_fset: 
  shows "map_fset f (S |∪| T) = map_fset f S |∪| map_fset f T"
  by (descending) (simp)

lemma in_fset_map_fset[simp]: "a |∈| map_fset f X = (∃b. b |∈| X ∧ a = f b)"
  by descending auto


subsection {* card_fset *}

lemma card_fset: 
  shows "card_fset xs = card (fset xs)"
  by (descending) (simp)

lemma card_insert_fset_iff [simp]:
  shows "card_fset (insert_fset x S) = (if x |∈| S then card_fset S else Suc (card_fset S))"
  by (descending) (simp add: insert_absorb)

lemma card_fset_0[simp]:
  shows "card_fset S = 0 ⟷ S = {||}"
  by (descending) (simp)

lemma card_empty_fset[simp]:
  shows "card_fset {||} = 0"
  by (simp add: card_fset)

lemma card_fset_1:
  shows "card_fset S = 1 ⟷ (∃x. S = {|x|})"
  by (descending) (auto simp add: card_Suc_eq)

lemma card_fset_gt_0:
  shows "x ∈ fset S ⟹ 0 < card_fset S"
  by (descending) (auto simp add: card_gt_0_iff)
  
lemma card_notin_fset:
  shows "(x |∉| S) = (card_fset (insert_fset x S) = Suc (card_fset S))"
  by simp

lemma card_fset_Suc: 
  shows "card_fset S = Suc n ⟹ ∃x T. x |∉| T ∧ S = insert_fset x T ∧ card_fset T = n"
  apply(descending)
  apply(auto dest!: card_eq_SucD)
  by (metis Diff_insert_absorb set_removeAll)

lemma card_remove_fset_iff [simp]:
  shows "card_fset (remove_fset y S) = (if y |∈| S then card_fset S - 1 else card_fset S)"
  by (descending) (simp)

lemma card_Suc_exists_in_fset: 
  shows "card_fset S = Suc n ⟹ ∃a. a |∈| S"
  by (drule card_fset_Suc) (auto)

lemma in_card_fset_not_0: 
  shows "a |∈| A ⟹ card_fset A ≠ 0"
  by (descending) (auto)

lemma card_fset_mono: 
  shows "xs |⊆| ys ⟹ card_fset xs ≤ card_fset ys"
  unfolding card_fset psubset_fset
  by (simp add: card_mono subset_fset)

lemma card_subset_fset_eq: 
  shows "xs |⊆| ys ⟹ card_fset ys ≤ card_fset xs ⟹ xs = ys"
  unfolding card_fset subset_fset
  by (auto dest: card_seteq[OF finite_fset] simp add: fset_cong)

lemma psubset_card_fset_mono: 
  shows "xs |⊂| ys ⟹ card_fset xs < card_fset ys"
  unfolding card_fset subset_fset
  by (metis finite_fset psubset_fset psubset_card_mono)

lemma card_union_inter_fset: 
  shows "card_fset xs + card_fset ys = card_fset (xs |∪| ys) + card_fset (xs |∩| ys)"
  unfolding card_fset union_fset inter_fset
  by (rule card_Un_Int[OF finite_fset finite_fset])

lemma card_union_disjoint_fset: 
  shows "xs |∩| ys = {||} ⟹ card_fset (xs |∪| ys) = card_fset xs + card_fset ys"
  unfolding card_fset union_fset 
  apply (rule card_Un_disjoint[OF finite_fset finite_fset])
  by (metis inter_fset fset_simps(1))

lemma card_remove_fset_less1: 
  shows "x |∈| xs ⟹ card_fset (remove_fset x xs) < card_fset xs"
  unfolding card_fset in_fset remove_fset 
  by (rule card_Diff1_less[OF finite_fset])

lemma card_remove_fset_less2: 
  shows "x |∈| xs ⟹ y |∈| xs ⟹ card_fset (remove_fset y (remove_fset x xs)) < card_fset xs"
  unfolding card_fset remove_fset in_fset
  by (rule card_Diff2_less[OF finite_fset])

lemma card_remove_fset_le1: 
  shows "card_fset (remove_fset x xs) ≤ card_fset xs"
  unfolding remove_fset card_fset
  by (rule card_Diff1_le[OF finite_fset])

lemma card_psubset_fset: 
  shows "ys |⊆| xs ⟹ card_fset ys < card_fset xs ⟹ ys |⊂| xs"
  unfolding card_fset psubset_fset subset_fset
  by (rule card_psubset[OF finite_fset])

lemma card_map_fset_le: 
  shows "card_fset (map_fset f xs) ≤ card_fset xs"
  unfolding card_fset map_fset_image
  by (rule card_image_le[OF finite_fset])

lemma card_minus_insert_fset[simp]:
  assumes "a |∈| A" and "a |∉| B"
  shows "card_fset (A - insert_fset a B) = card_fset (A - B) - 1"
  using assms 
  unfolding in_fset card_fset minus_fset
  by (simp add: card_Diff_insert[OF finite_fset])

lemma card_minus_subset_fset:
  assumes "B |⊆| A"
  shows "card_fset (A - B) = card_fset A - card_fset B"
  using assms 
  unfolding subset_fset card_fset minus_fset
  by (rule card_Diff_subset[OF finite_fset])

lemma card_minus_fset:
  shows "card_fset (A - B) = card_fset A - card_fset (A |∩| B)"
  unfolding inter_fset card_fset minus_fset
  by (rule card_Diff_subset_Int) (simp)


subsection {* concat_fset *}

lemma concat_empty_fset [simp]:
  shows "concat_fset {||} = {||}"
  by descending simp

lemma concat_insert_fset [simp]:
  shows "concat_fset (insert_fset x S) = x |∪| concat_fset S"
  by descending simp

lemma concat_union_fset [simp]:
  shows "concat_fset (xs |∪| ys) = concat_fset xs |∪| concat_fset ys"
  by descending simp

lemma map_concat_fset:
  shows "map_fset f (concat_fset xs) = concat_fset (map_fset (map_fset f) xs)"
  by (lifting map_concat)

subsection {* filter_fset *}

lemma subset_filter_fset: 
  "filter_fset P xs |⊆| filter_fset Q xs = (∀ x. x |∈| xs ⟶ P x ⟶ Q x)"
  by descending auto

lemma eq_filter_fset: 
  "(filter_fset P xs = filter_fset Q xs) = (∀x. x |∈| xs ⟶ P x = Q x)"
  by descending auto

lemma psubset_filter_fset:
  "(⋀x. x |∈| xs ⟹ P x ⟹ Q x) ⟹ (x |∈| xs & ¬ P x & Q x) ⟹ 
    filter_fset P xs |⊂| filter_fset Q xs"
  unfolding less_fset_def by (auto simp add: subset_filter_fset eq_filter_fset)


subsection {* fold_fset *}

lemma fold_empty_fset: 
  "fold_fset f {||} = id"
  by descending (simp add: fold_once_def)

lemma fold_insert_fset: "fold_fset f (insert_fset a A) =
  (if rsp_fold f then if a |∈| A then fold_fset f A else fold_fset f A ∘ f a else id)"
  by descending (simp add: fold_once_fold_remdups)

lemma remdups_removeAll:
  "remdups (removeAll x xs) = remove1 x (remdups xs)"
  by (induct xs) auto

lemma member_commute_fold_once:
  assumes "rsp_fold f"
    and "x ∈ set xs"
  shows "fold_once f xs = fold_once f (removeAll x xs) ∘ f x"
proof -
  from assms have "fold f (remdups xs) = fold f (remove1 x (remdups xs)) ∘ f x"
    by (auto intro!: fold_remove1_split elim: rsp_foldE)
  then show ?thesis using `rsp_fold f` by (simp add: fold_once_fold_remdups remdups_removeAll)
qed

lemma in_commute_fold_fset:
  "rsp_fold f ⟹ h |∈| b ⟹ fold_fset f b = fold_fset f (remove_fset h b) ∘ f h"
  by descending (simp add: member_commute_fold_once)


subsection {* Choice in fsets *}

lemma fset_choice: 
  assumes a: "∀x. x |∈| A ⟶ (∃y. P x y)"
  shows "∃f. ∀x. x |∈| A ⟶ P x (f x)"
  using a
  apply(descending)
  using finite_set_choice
  by (auto simp add: Ball_def)


section {* Induction and Cases rules for fsets *}

lemma fset_exhaust [case_names empty insert, cases type: fset]:
  assumes empty_fset_case: "S = {||} ⟹ P" 
  and     insert_fset_case: "⋀x S'. S = insert_fset x S' ⟹ P"
  shows "P"
  using assms by (lifting list.exhaust)

lemma fset_induct [case_names empty insert]:
  assumes empty_fset_case: "P {||}"
  and     insert_fset_case: "⋀x S. P S ⟹ P (insert_fset x S)"
  shows "P S"
  using assms 
  by (descending) (blast intro: list.induct)

lemma fset_induct_stronger [case_names empty insert, induct type: fset]:
  assumes empty_fset_case: "P {||}"
  and     insert_fset_case: "⋀x S. ⟦x |∉| S; P S⟧ ⟹ P (insert_fset x S)"
  shows "P S"
proof(induct S rule: fset_induct)
  case empty
  show "P {||}" using empty_fset_case by simp
next
  case (insert x S)
  have "P S" by fact
  then show "P (insert_fset x S)" using insert_fset_case 
    by (cases "x |∈| S") (simp_all)
qed

lemma fset_card_induct:
  assumes empty_fset_case: "P {||}"
  and     card_fset_Suc_case: "⋀S T. Suc (card_fset S) = (card_fset T) ⟹ P S ⟹ P T"
  shows "P S"
proof (induct S)
  case empty
  show "P {||}" by (rule empty_fset_case)
next
  case (insert x S)
  have h: "P S" by fact
  have "x |∉| S" by fact
  then have "Suc (card_fset S) = card_fset (insert_fset x S)" 
    using card_fset_Suc by auto
  then show "P (insert_fset x S)" 
    using h card_fset_Suc_case by simp
qed

lemma fset_raw_strong_cases:
  obtains "xs = []"
    | ys x where "¬ List.member ys x" and "xs ≈ x # ys"
proof (induct xs)
  case Nil
  then show thesis by simp
next
  case (Cons a xs)
  have a: "⟦xs = [] ⟹ thesis; ⋀x ys. ⟦¬ List.member ys x; xs ≈ x # ys⟧ ⟹ thesis⟧ ⟹ thesis"
    by (rule Cons(1))
  have b: "⋀x' ys'. ⟦¬ List.member ys' x'; a # xs ≈ x' # ys'⟧ ⟹ thesis" by fact
  have c: "xs = [] ⟹ thesis" using b 
    apply(simp)
    by (metis list.set(1) emptyE empty_subsetI)
  have "⋀x ys. ⟦¬ List.member ys x; xs ≈ x # ys⟧ ⟹ thesis"
  proof -
    fix x :: 'a
    fix ys :: "'a list"
    assume d:"¬ List.member ys x"
    assume e:"xs ≈ x # ys"
    show thesis
    proof (cases "x = a")
      assume h: "x = a"
      then have f: "¬ List.member ys a" using d by simp
      have g: "a # xs ≈ a # ys" using e h by auto
      show thesis using b f g by simp
    next
      assume h: "x ≠ a"
      then have f: "¬ List.member (a # ys) x" using d by auto
      have g: "a # xs ≈ x # (a # ys)" using e h by auto
      show thesis using b f g by (simp del: List.member_def) 
    qed
  qed
  then show thesis using a c by blast
qed


lemma fset_strong_cases:
  obtains "xs = {||}"
    | ys x where "x |∉| ys" and "xs = insert_fset x ys"
  by (lifting fset_raw_strong_cases)


lemma fset_induct2:
  "P {||} {||} ⟹
  (⋀x xs. x |∉| xs ⟹ P (insert_fset x xs) {||}) ⟹
  (⋀y ys. y |∉| ys ⟹ P {||} (insert_fset y ys)) ⟹
  (⋀x xs y ys. ⟦P xs ys; x |∉| xs; y |∉| ys⟧ ⟹ P (insert_fset x xs) (insert_fset y ys)) ⟹
  P xsa ysa"
  apply (induct xsa arbitrary: ysa)
  apply (induct_tac x rule: fset_induct_stronger)
  apply simp_all
  apply (induct_tac xa rule: fset_induct_stronger)
  apply simp_all
  done

text {* Extensionality *}

lemma fset_eqI:
  assumes "⋀x. x ∈ fset A ⟷ x ∈ fset B"
  shows "A = B"
using assms proof (induct A arbitrary: B)
  case empty then show ?case
    by (auto simp add: in_fset none_in_empty_fset [symmetric] sym)
next
  case (insert x A)
  from insert.prems insert.hyps(1) have "⋀z. z ∈ fset A ⟷ z ∈ fset (B - {|x|})"
    by (auto simp add: in_fset)
  then have A: "A = B - {|x|}" by (rule insert.hyps(2))
  with insert.prems [symmetric, of x] have "x |∈| B" by (simp add: in_fset)
  with A show ?case by (metis in_fset_mdef)
qed

subsection {* alternate formulation with a different decomposition principle
  and a proof of equivalence *}

inductive
  list_eq2 :: "'a list ⇒ 'a list ⇒ bool" ("_ ≈2 _")
where
  "(a # b # xs) ≈2 (b # a # xs)"
| "[] ≈2 []"
| "xs ≈2 ys ⟹ ys ≈2 xs"
| "(a # a # xs) ≈2 (a # xs)"
| "xs ≈2 ys ⟹ (a # xs) ≈2 (a # ys)"
| "xs1 ≈2 xs2 ⟹ xs2 ≈2 xs3 ⟹ xs1 ≈2 xs3"

lemma list_eq2_refl:
  shows "xs ≈2 xs"
  by (induct xs) (auto intro: list_eq2.intros)

lemma cons_delete_list_eq2:
  shows "(a # (removeAll a A)) ≈2 (if List.member A a then A else a # A)"
  apply (induct A)
  apply (simp add: list_eq2_refl)
  apply (case_tac "List.member (aa # A) a")
  apply (simp_all)
  apply (case_tac [!] "a = aa")
  apply (simp_all)
  apply (case_tac "List.member A a")
  apply (auto)[2]
  apply (metis list_eq2.intros(3) list_eq2.intros(4) list_eq2.intros(5) list_eq2.intros(6))
  apply (metis list_eq2.intros(1) list_eq2.intros(5) list_eq2.intros(6))
  apply (auto simp add: list_eq2_refl)
  done

lemma member_delete_list_eq2:
  assumes a: "List.member r e"
  shows "(e # removeAll e r) ≈2 r"
  using a cons_delete_list_eq2[of e r]
  by simp

lemma list_eq2_equiv:
  "(l ≈ r) ⟷ (list_eq2 l r)"
proof
  show "list_eq2 l r ⟹ l ≈ r" by (induct rule: list_eq2.induct) auto
next
  {
    fix n
    assume a: "card_list l = n" and b: "l ≈ r"
    have "l ≈2 r"
      using a b
    proof (induct n arbitrary: l r)
      case 0
      have "card_list l = 0" by fact
      then have "∀x. ¬ List.member l x" by auto
      then have z: "l = []" by auto
      then have "r = []" using `l ≈ r` by simp
      then show ?case using z list_eq2_refl by simp
    next
      case (Suc m)
      have b: "l ≈ r" by fact
      have d: "card_list l = Suc m" by fact
      then have "∃a. List.member l a" 
        apply(simp)
        apply(drule card_eq_SucD)
        apply(blast)
        done
      then obtain a where e: "List.member l a" by auto
      then have e': "List.member r a" using list_eq_def [simplified List.member_def [symmetric], of l r] b 
        by auto
      have f: "card_list (removeAll a l) = m" using e d by (simp)
      have g: "removeAll a l ≈ removeAll a r" using remove_fset.rsp b by simp
      have "(removeAll a l) ≈2 (removeAll a r)" by (rule Suc.hyps[OF f g])
      then have h: "(a # removeAll a l) ≈2 (a # removeAll a r)" by (rule list_eq2.intros(5))
      have i: "l ≈2 (a # removeAll a l)"
        by (rule list_eq2.intros(3)[OF member_delete_list_eq2[OF e]])
      have "l ≈2 (a # removeAll a r)" by (rule list_eq2.intros(6)[OF i h])
      then show ?case using list_eq2.intros(6)[OF _ member_delete_list_eq2[OF e']] by simp
    qed
    }
  then show "l ≈ r ⟹ l ≈2 r" by blast
qed


(* We cannot write it as "assumes .. shows" since Isabelle changes
   the quantifiers to schematic variables and reintroduces them in
   a different order *)
lemma fset_eq_cases:
 "⟦a1 = a2;
   ⋀a b xs. ⟦a1 = insert_fset a (insert_fset b xs); a2 = insert_fset b (insert_fset a xs)⟧ ⟹ P;
   ⟦a1 = {||}; a2 = {||}⟧ ⟹ P; ⋀xs ys. ⟦a1 = ys; a2 = xs; xs = ys⟧ ⟹ P;
   ⋀a xs. ⟦a1 = insert_fset a (insert_fset a xs); a2 = insert_fset a xs⟧ ⟹ P;
   ⋀xs ys a. ⟦a1 = insert_fset a xs; a2 = insert_fset a ys; xs = ys⟧ ⟹ P;
   ⋀xs1 xs2 xs3. ⟦a1 = xs1; a2 = xs3; xs1 = xs2; xs2 = xs3⟧ ⟹ P⟧
  ⟹ P"
  by (lifting list_eq2.cases[simplified list_eq2_equiv[symmetric]])

lemma fset_eq_induct:
  assumes "x1 = x2"
  and "⋀a b xs. P (insert_fset a (insert_fset b xs)) (insert_fset b (insert_fset a xs))"
  and "P {||} {||}"
  and "⋀xs ys. ⟦xs = ys; P xs ys⟧ ⟹ P ys xs"
  and "⋀a xs. P (insert_fset a (insert_fset a xs)) (insert_fset a xs)"
  and "⋀xs ys a. ⟦xs = ys; P xs ys⟧ ⟹ P (insert_fset a xs) (insert_fset a ys)"
  and "⋀xs1 xs2 xs3. ⟦xs1 = xs2; P xs1 xs2; xs2 = xs3; P xs2 xs3⟧ ⟹ P xs1 xs3"
  shows "P x1 x2"
  using assms
  by (lifting list_eq2.induct[simplified list_eq2_equiv[symmetric]])

ML {*
fun dest_fsetT (Type (@{type_name fset}, [T])) = T
  | dest_fsetT T = raise TYPE ("dest_fsetT: fset type expected", [T], []);
*}

no_notation
  list_eq (infix "≈" 50) and 
  list_eq2 (infix "≈2" 50)

end