Theory Nominal2_Base

theory Nominal2_Base
imports Old_Datatype Infinite_Set FSet FinFun
(*  Title:      Nominal2_Base
    Authors:    Christian Urban, Brian Huffman, Cezary Kaliszyk

    Basic definitions and lemma infrastructure for 
    Nominal Isabelle. 
*)
theory Nominal2_Base
imports "~~/src/HOL/Library/Old_Datatype"
        "~~/src/HOL/Library/Infinite_Set"
        "~~/src/HOL/Quotient_Examples/FSet"
        "~~/src/HOL/Library/FinFun"
keywords
  "atom_decl" "equivariance" :: thy_decl 
begin

declare [[typedef_overloaded]]


section {* Atoms and Sorts *}

text {* A simple implementation for atom_sorts is strings. *}
(* types atom_sort = string *)

text {* To deal with Church-like binding we use trees of  
  strings as sorts. *}

datatype atom_sort = Sort "string" "atom_sort list"

datatype atom = Atom atom_sort nat


text {* Basic projection function. *}

primrec
  sort_of :: "atom ⇒ atom_sort"
where
  "sort_of (Atom s n) = s"

primrec
  nat_of :: "atom ⇒ nat"
where
  "nat_of (Atom s n) = n"


text {* There are infinitely many atoms of each sort. *}
lemma INFM_sort_of_eq: 
  shows "INFM a. sort_of a = s"
proof -
  have "INFM i. sort_of (Atom s i) = s" by simp
  moreover have "inj (Atom s)" by (simp add: inj_on_def)
  ultimately show "INFM a. sort_of a = s" by (rule INFM_inj)
qed

lemma infinite_sort_of_eq:
  shows "infinite {a. sort_of a = s}"
  using INFM_sort_of_eq unfolding INFM_iff_infinite .

lemma atom_infinite [simp]: 
  shows "infinite (UNIV :: atom set)"
  using subset_UNIV infinite_sort_of_eq
  by (rule infinite_super)

lemma obtain_atom:
  fixes X :: "atom set"
  assumes X: "finite X"
  obtains a where "a ∉ X" "sort_of a = s"
proof -
  from X have "MOST a. a ∉ X"
    unfolding MOST_iff_cofinite by simp
  with INFM_sort_of_eq
  have "INFM a. sort_of a = s ∧ a ∉ X"
    by (rule INFM_conjI)
  then obtain a where "a ∉ X" "sort_of a = s"
    by (auto elim: INFM_E)
  then show ?thesis ..
qed

lemma atom_components_eq_iff:
  fixes a b :: atom
  shows "a = b ⟷ sort_of a = sort_of b ∧ nat_of a = nat_of b"
  by (induct a, induct b, simp)


section {* Sort-Respecting Permutations *}

definition
  "perm ≡ {f. bij f ∧ finite {a. f a ≠ a} ∧ (∀a. sort_of (f a) = sort_of a)}"

typedef perm = "perm"
proof
  show "id ∈ perm" unfolding perm_def by simp
qed

lemma permI:
  assumes "bij f" and "MOST x. f x = x" and "⋀a. sort_of (f a) = sort_of a"
  shows "f ∈ perm"
  using assms unfolding perm_def MOST_iff_cofinite by simp

lemma perm_is_bij: "f ∈ perm ⟹ bij f"
  unfolding perm_def by simp

lemma perm_is_finite: "f ∈ perm ⟹ finite {a. f a ≠ a}"
  unfolding perm_def by simp

lemma perm_is_sort_respecting: "f ∈ perm ⟹ sort_of (f a) = sort_of a"
  unfolding perm_def by simp

lemma perm_MOST: "f ∈ perm ⟹ MOST x. f x = x"
  unfolding perm_def MOST_iff_cofinite by simp

lemma perm_id: "id ∈ perm"
  unfolding perm_def by simp

lemma perm_comp:
  assumes f: "f ∈ perm" and g: "g ∈ perm"
  shows "(f ∘ g) ∈ perm"
apply (rule permI)
apply (rule bij_comp)
apply (rule perm_is_bij [OF g])
apply (rule perm_is_bij [OF f])
apply (rule MOST_rev_mp [OF perm_MOST [OF g]])
apply (rule MOST_rev_mp [OF perm_MOST [OF f]])
apply (simp)
apply (simp add: perm_is_sort_respecting [OF f])
apply (simp add: perm_is_sort_respecting [OF g])
done

lemma perm_inv:
  assumes f: "f ∈ perm"
  shows "(inv f) ∈ perm"
apply (rule permI)
apply (rule bij_imp_bij_inv)
apply (rule perm_is_bij [OF f])
apply (rule MOST_mono [OF perm_MOST [OF f]])
apply (erule subst, rule inv_f_f)
apply (rule bij_is_inj [OF perm_is_bij [OF f]])
apply (rule perm_is_sort_respecting [OF f, THEN sym, THEN trans])
apply (simp add: surj_f_inv_f [OF bij_is_surj [OF perm_is_bij [OF f]]])
done

lemma bij_Rep_perm: "bij (Rep_perm p)"
  using Rep_perm [of p] unfolding perm_def by simp

lemma finite_Rep_perm: "finite {a. Rep_perm p a ≠ a}"
  using Rep_perm [of p] unfolding perm_def by simp

lemma sort_of_Rep_perm: "sort_of (Rep_perm p a) = sort_of a"
  using Rep_perm [of p] unfolding perm_def by simp

lemma Rep_perm_ext:
  "Rep_perm p1 = Rep_perm p2 ⟹ p1 = p2"
  by (simp add: fun_eq_iff Rep_perm_inject [symmetric])

instance perm :: size ..


subsection {* Permutations form a (multiplicative) group *}

instantiation perm :: group_add
begin

definition
  "0 = Abs_perm id"

definition
  "- p = Abs_perm (inv (Rep_perm p))"

definition
  "p + q = Abs_perm (Rep_perm p ∘ Rep_perm q)"

definition
  "(p1::perm) - p2 = p1 + - p2"

lemma Rep_perm_0: "Rep_perm 0 = id"
  unfolding zero_perm_def
  by (simp add: Abs_perm_inverse perm_id)

lemma Rep_perm_add:
  "Rep_perm (p1 + p2) = Rep_perm p1 ∘ Rep_perm p2"
  unfolding plus_perm_def
  by (simp add: Abs_perm_inverse perm_comp Rep_perm)

lemma Rep_perm_uminus:
  "Rep_perm (- p) = inv (Rep_perm p)"
  unfolding uminus_perm_def
  by (simp add: Abs_perm_inverse perm_inv Rep_perm)

instance
apply standard
unfolding Rep_perm_inject [symmetric]
unfolding minus_perm_def
unfolding Rep_perm_add
unfolding Rep_perm_uminus
unfolding Rep_perm_0
by (simp_all add: o_assoc inv_o_cancel [OF bij_is_inj [OF bij_Rep_perm]])

end


section {* Implementation of swappings *}

definition
  swap :: "atom ⇒ atom ⇒ perm" ("'(_ ⇌ _')")
where
  "(a ⇌ b) =
    Abs_perm (if sort_of a = sort_of b 
              then (λc. if a = c then b else if b = c then a else c) 
              else id)"

lemma Rep_perm_swap:
  "Rep_perm (a ⇌ b) =
    (if sort_of a = sort_of b 
     then (λc. if a = c then b else if b = c then a else c)
     else id)"
unfolding swap_def
apply (rule Abs_perm_inverse)
apply (rule permI)
apply (auto simp: bij_def inj_on_def surj_def)[1]
apply (rule MOST_rev_mp [OF MOST_neq(1) [of a]])
apply (rule MOST_rev_mp [OF MOST_neq(1) [of b]])
apply (simp)
apply (simp)
done

lemmas Rep_perm_simps =
  Rep_perm_0
  Rep_perm_add
  Rep_perm_uminus
  Rep_perm_swap

lemma swap_different_sorts [simp]:
  "sort_of a ≠ sort_of b ⟹ (a ⇌ b) = 0"
  by (rule Rep_perm_ext) (simp add: Rep_perm_simps)

lemma swap_cancel:
  shows "(a ⇌ b) + (a ⇌ b) = 0"
  and   "(a ⇌ b) + (b ⇌ a) = 0"
  by (rule_tac [!] Rep_perm_ext) 
     (simp_all add: Rep_perm_simps fun_eq_iff)

lemma swap_self [simp]:
  "(a ⇌ a) = 0"
  by (rule Rep_perm_ext, simp add: Rep_perm_simps fun_eq_iff)

lemma minus_swap [simp]:
  "- (a ⇌ b) = (a ⇌ b)"
  by (rule minus_unique [OF swap_cancel(1)])

lemma swap_commute:
  "(a ⇌ b) = (b ⇌ a)"
  by (rule Rep_perm_ext)
     (simp add: Rep_perm_swap fun_eq_iff)

lemma swap_triple:
  assumes "a ≠ b" and "c ≠ b"
  assumes "sort_of a = sort_of b" "sort_of b = sort_of c"
  shows "(a ⇌ c) + (b ⇌ c) + (a ⇌ c) = (a ⇌ b)"
  using assms
  by (rule_tac Rep_perm_ext)
     (auto simp: Rep_perm_simps fun_eq_iff)


section {* Permutation Types *}

text {*
  Infix syntax for @{text permute} has higher precedence than
  addition, but lower than unary minus.
*}

class pt =
  fixes permute :: "perm ⇒ 'a ⇒ 'a" ("_ ∙ _" [76, 75] 75)
  assumes permute_zero [simp]: "0 ∙ x = x"
  assumes permute_plus [simp]: "(p + q) ∙ x = p ∙ (q ∙ x)"
begin

lemma permute_diff [simp]:
  shows "(p - q) ∙ x = p ∙ - q ∙ x"
  using permute_plus [of p "- q" x] by simp

lemma permute_minus_cancel [simp]:
  shows "p ∙ - p ∙ x = x"
  and   "- p ∙ p ∙ x = x"
  unfolding permute_plus [symmetric] by simp_all

lemma permute_swap_cancel [simp]:
  shows "(a ⇌ b) ∙ (a ⇌ b) ∙ x = x"
  unfolding permute_plus [symmetric]
  by (simp add: swap_cancel)

lemma permute_swap_cancel2 [simp]:
  shows "(a ⇌ b) ∙ (b ⇌ a) ∙ x = x"
  unfolding permute_plus [symmetric]
  by (simp add: swap_commute)

lemma inj_permute [simp]: 
  shows "inj (permute p)"
  by (rule inj_on_inverseI)
     (rule permute_minus_cancel)

lemma surj_permute [simp]: 
  shows "surj (permute p)"
  by (rule surjI, rule permute_minus_cancel)

lemma bij_permute [simp]: 
  shows "bij (permute p)"
  by (rule bijI [OF inj_permute surj_permute])

lemma inv_permute: 
  shows "inv (permute p) = permute (- p)"
  by (rule inv_equality) (simp_all)

lemma permute_minus: 
  shows "permute (- p) = inv (permute p)"
  by (simp add: inv_permute)

lemma permute_eq_iff [simp]: 
  shows "p ∙ x = p ∙ y ⟷ x = y"
  by (rule inj_permute [THEN inj_eq])

end

subsection {* Permutations for atoms *}

instantiation atom :: pt
begin

definition
  "p ∙ a = (Rep_perm p) a"

instance 
apply standard
apply(simp_all add: permute_atom_def Rep_perm_simps)
done

end

lemma sort_of_permute [simp]:
  shows "sort_of (p ∙ a) = sort_of a"
  unfolding permute_atom_def by (rule sort_of_Rep_perm)

lemma swap_atom:
  shows "(a ⇌ b) ∙ c =
           (if sort_of a = sort_of b
            then (if c = a then b else if c = b then a else c) else c)"
  unfolding permute_atom_def
  by (simp add: Rep_perm_swap)

lemma swap_atom_simps [simp]:
  "sort_of a = sort_of b ⟹ (a ⇌ b) ∙ a = b"
  "sort_of a = sort_of b ⟹ (a ⇌ b) ∙ b = a"
  "c ≠ a ⟹ c ≠ b ⟹ (a ⇌ b) ∙ c = c"
  unfolding swap_atom by simp_all

lemma perm_eq_iff:
  fixes p q :: "perm"
  shows "p = q ⟷ (∀a::atom. p ∙ a = q ∙ a)"
  unfolding permute_atom_def
  by (metis Rep_perm_ext ext)

subsection {* Permutations for permutations *}

instantiation perm :: pt
begin

definition
  "p ∙ q = p + q - p"

instance
apply standard
apply (simp add: permute_perm_def)
apply (simp add: permute_perm_def algebra_simps)
done

end

lemma permute_self: 
  shows "p ∙ p = p"
  unfolding permute_perm_def 
  by (simp add: add.assoc)

lemma pemute_minus_self:
  shows "- p ∙ p = p"
  unfolding permute_perm_def 
  by (simp add: add.assoc)


subsection {* Permutations for functions *}

instantiation "fun" :: (pt, pt) pt
begin

definition
  "p ∙ f = (λx. p ∙ (f (- p ∙ x)))"

instance
apply standard
apply (simp add: permute_fun_def)
apply (simp add: permute_fun_def minus_add)
done

end

lemma permute_fun_app_eq:
  shows "p ∙ (f x) = (p ∙ f) (p ∙ x)"
  unfolding permute_fun_def by simp

lemma permute_fun_comp:
  shows "p ∙ f  = (permute p) o f o (permute (-p))"
by (simp add: comp_def permute_fun_def)

subsection {* Permutations for booleans *}

instantiation bool :: pt
begin

definition "p ∙ (b::bool) = b"

instance
apply standard
apply(simp_all add: permute_bool_def)
done

end

lemma permute_boolE:
  fixes P::"bool"
  shows "p ∙ P ⟹ P"
  by (simp add: permute_bool_def)

lemma permute_boolI:
  fixes P::"bool"
  shows "P ⟹ p ∙ P"
  by(simp add: permute_bool_def)

subsection {* Permutations for sets *}

instantiation "set" :: (pt) pt
begin

definition
  "p ∙ X = {p ∙ x | x. x ∈ X}" 

instance
apply standard
apply (auto simp: permute_set_def)
done

end

lemma permute_set_eq:
 shows "p ∙ X = {x. - p ∙ x ∈ X}"
unfolding permute_set_def
by (auto) (metis permute_minus_cancel(1))

lemma permute_set_eq_image:
  shows "p ∙ X = permute p ` X"
  unfolding permute_set_def by auto

lemma permute_set_eq_vimage:
  shows "p ∙ X = permute (- p) -` X"
  unfolding permute_set_eq vimage_def
  by simp
  
lemma permute_finite [simp]:
  shows "finite (p ∙ X) = finite X"
  unfolding permute_set_eq_vimage
  using bij_permute by (rule finite_vimage_iff)

lemma swap_set_not_in:
  assumes a: "a ∉ S" "b ∉ S"
  shows "(a ⇌ b) ∙ S = S"
  unfolding permute_set_def
  using a by (auto simp: swap_atom)

lemma swap_set_in:
  assumes a: "a ∈ S" "b ∉ S" "sort_of a = sort_of b"
  shows "(a ⇌ b) ∙ S ≠ S"
  unfolding permute_set_def
  using a by (auto simp: swap_atom)

lemma swap_set_in_eq:
  assumes a: "a ∈ S" "b ∉ S" "sort_of a = sort_of b"
  shows "(a ⇌ b) ∙ S = (S - {a}) ∪ {b}"
  unfolding permute_set_def
  using a by (auto simp: swap_atom)

lemma swap_set_both_in:
  assumes a: "a ∈ S" "b ∈ S"
  shows "(a ⇌ b) ∙ S = S"
  unfolding permute_set_def
  using a by (auto simp: swap_atom)

lemma mem_permute_iff:
  shows "(p ∙ x) ∈ (p ∙ X) ⟷ x ∈ X"
  unfolding permute_set_def
  by auto

lemma empty_eqvt:
  shows "p ∙ {} = {}"
  unfolding permute_set_def
  by (simp)

lemma insert_eqvt:
  shows "p ∙ (insert x A) = insert (p ∙ x) (p ∙ A)"
  unfolding permute_set_eq_image image_insert ..


subsection {* Permutations for @{typ unit} *}

instantiation unit :: pt
begin

definition "p ∙ (u::unit) = u"

instance 
  by standard (simp_all add: permute_unit_def)

end


subsection {* Permutations for products *}

instantiation prod :: (pt, pt) pt
begin

primrec 
  permute_prod 
where
  Pair_eqvt: "p ∙ (x, y) = (p ∙ x, p ∙ y)"

instance
  by standard auto

end

subsection {* Permutations for sums *}

instantiation sum :: (pt, pt) pt
begin

primrec 
  permute_sum 
where
  Inl_eqvt: "p ∙ (Inl x) = Inl (p ∙ x)"
| Inr_eqvt: "p ∙ (Inr y) = Inr (p ∙ y)"

instance 
  by standard (case_tac [!] x, simp_all)

end

subsection {* Permutations for @{typ "'a list"} *}

instantiation list :: (pt) pt
begin

primrec 
  permute_list 
where
  Nil_eqvt:  "p ∙ [] = []"
| Cons_eqvt: "p ∙ (x # xs) = p ∙ x # p ∙ xs"

instance 
  by standard (induct_tac [!] x, simp_all)

end

lemma set_eqvt:
  shows "p ∙ (set xs) = set (p ∙ xs)"
  by (induct xs) (simp_all add: empty_eqvt insert_eqvt)



subsection {* Permutations for @{typ "'a option"} *}

instantiation option :: (pt) pt
begin

primrec 
  permute_option 
where
  None_eqvt: "p ∙ None = None"
| Some_eqvt: "p ∙ (Some x) = Some (p ∙ x)"

instance 
  by standard (induct_tac [!] x, simp_all)

end

subsection {* Permutations for @{typ "'a multiset"} *}

instantiation multiset :: (pt) pt
begin

definition
  "p ∙ M = {# p ∙ x. x :# M #}"

instance 
proof
  fix M :: "'a multiset" and p q :: "perm"
  show "0 ∙ M = M" 
    unfolding permute_multiset_def
    by (induct_tac M) (simp_all)
  show "(p + q) ∙ M = p ∙ q ∙ M" 
    unfolding permute_multiset_def
    by (induct_tac M) (simp_all)
qed

end

lemma permute_multiset [simp]:
  fixes M N::"('a::pt) multiset"
  shows "(p ∙ {#}) = ({#} ::('a::pt) multiset)"
  and   "(p ∙ {# x #}) = {# p ∙ x #}"
  and   "(p ∙ (M + N)) = (p ∙ M) + (p ∙ N)"
  unfolding permute_multiset_def
  by (simp_all)


subsection {* Permutations for @{typ "'a fset"} *}

lemma permute_fset_rsp[quot_respect]:
  shows "(op = ===> list_eq ===> list_eq) permute permute"
  unfolding rel_fun_def
  by (simp add: set_eqvt[symmetric])

instantiation fset :: (pt) pt
begin

quotient_definition
  "permute_fset :: perm ⇒ 'a fset ⇒ 'a fset"
is
  "permute :: perm ⇒ 'a list ⇒ 'a list"
  by (simp add: set_eqvt[symmetric])

instance 
proof
  fix x :: "'a fset" and p q :: "perm"
  show "0 ∙ x = x" by (descending) (simp)
  show "(p + q) ∙ x = p ∙ q ∙ x" by (descending) (simp)
qed

end

lemma permute_fset [simp]:
  fixes S::"('a::pt) fset"
  shows "(p ∙ {||}) = ({||} ::('a::pt) fset)"
  and   "(p ∙ insert_fset x S) = insert_fset (p ∙ x) (p ∙ S)"
  by (lifting permute_list.simps)

lemma fset_eqvt: 
  shows "p ∙ (fset S) = fset (p ∙ S)"
  by (lifting set_eqvt)


subsection {* Permutations for @{typ "('a, 'b) finfun"} *}

instantiation finfun :: (pt, pt) pt
begin

lift_definition
  permute_finfun :: "perm ⇒ ('a, 'b) finfun ⇒ ('a, 'b) finfun"
is
  "permute :: perm ⇒ ('a ⇒ 'b) ⇒ ('a ⇒ 'b)"
  apply(simp add: permute_fun_comp)
  apply(rule finfun_right_compose)
  apply(rule finfun_left_compose)
  apply(assumption)
  apply(simp)
  done

instance
apply standard
apply(transfer)
apply(simp)
apply(transfer)
apply(simp)
done

end


subsection {* Permutations for @{typ char}, @{typ nat}, and @{typ int} *}

instantiation char :: pt
begin

definition "p ∙ (c::char) = c"

instance 
  by standard (simp_all add: permute_char_def)

end

instantiation nat :: pt
begin

definition "p ∙ (n::nat) = n"

instance 
  by standard (simp_all add: permute_nat_def)

end

instantiation int :: pt
begin

definition "p ∙ (i::int) = i"

instance 
  by standard (simp_all add: permute_int_def)

end


section {* Pure types *}

text {* Pure types will have always empty support. *}

class pure = pt +
  assumes permute_pure: "p ∙ x = x"

text {* Types @{typ unit} and @{typ bool} are pure. *}

instance unit :: pure
proof qed (rule permute_unit_def)

instance bool :: pure
proof qed (rule permute_bool_def)


text {* Other type constructors preserve purity. *}

instance "fun" :: (pure, pure) pure
  by standard (simp add: permute_fun_def permute_pure)

instance set :: (pure) pure
  by standard (simp add: permute_set_def permute_pure)

instance prod :: (pure, pure) pure
  by standard (induct_tac x, simp add: permute_pure)

instance sum :: (pure, pure) pure
  by standard (induct_tac x, simp_all add: permute_pure)

instance list :: (pure) pure
  by standard (induct_tac x, simp_all add: permute_pure)

instance option :: (pure) pure
  by standard (induct_tac x, simp_all add: permute_pure)


subsection {* Types @{typ char}, @{typ nat}, and @{typ int} *}

instance char :: pure
proof qed (rule permute_char_def)

instance nat :: pure
proof qed (rule permute_nat_def)

instance int :: pure
proof qed (rule permute_int_def)


section {* Infrastructure for Equivariance and Perm_simp *}

subsection {* Basic functions about permutations *}

ML_file "nominal_basics.ML"


subsection {* Eqvt infrastructure *}

text {* Setup of the theorem attributes @{text eqvt} and @{text eqvt_raw}. *}
                   
ML_file "nominal_thmdecls.ML"


lemmas [eqvt] =
  (* pt types *)
  permute_prod.simps 
  permute_list.simps 
  permute_option.simps 
  permute_sum.simps

  (* sets *)
  empty_eqvt insert_eqvt set_eqvt 

  (* fsets *)
  permute_fset fset_eqvt

  (* multisets *)
  permute_multiset

subsection {* perm_simp infrastructure *}

definition
  "unpermute p = permute (- p)"

lemma eqvt_apply:
  fixes f :: "'a::pt ⇒ 'b::pt" 
  and x :: "'a::pt"
  shows "p ∙ (f x) ≡ (p ∙ f) (p ∙ x)"
  unfolding permute_fun_def by simp

lemma eqvt_lambda:
  fixes f :: "'a::pt ⇒ 'b::pt"
  shows "p ∙ f ≡ (λx. p ∙ (f (unpermute p x)))"
  unfolding permute_fun_def unpermute_def by simp

lemma eqvt_bound:
  shows "p ∙ unpermute p x ≡ x"
  unfolding unpermute_def by simp

text {* provides perm_simp methods *}

ML_file "nominal_permeq.ML"

method_setup perm_simp =
 {* Nominal_Permeq.args_parser >> Nominal_Permeq.perm_simp_meth *}
 {* pushes permutations inside. *}

method_setup perm_strict_simp =
 {* Nominal_Permeq.args_parser >> Nominal_Permeq.perm_strict_simp_meth *}
 {* pushes permutations inside, raises an error if it cannot solve all permutations. *}

simproc_setup perm_simproc ("p ∙ t") = {* fn _ => fn ctxt => fn ctrm =>
  case Thm.term_of (Thm.dest_arg ctrm) of 
    Free _ => NONE
  | Var _ => NONE
  | Const (@{const_name permute}, _) $ _ $ _ => NONE
  | _ =>
      let
        val thm = Nominal_Permeq.eqvt_conv ctxt Nominal_Permeq.eqvt_strict_config ctrm
          handle ERROR _ => Thm.reflexive ctrm
      in
        if Thm.is_reflexive thm then NONE else SOME(thm)
      end
*}


subsubsection {* Equivariance for permutations and swapping *}

lemma permute_eqvt:
  shows "p ∙ (q ∙ x) = (p ∙ q) ∙ (p ∙ x)"
  unfolding permute_perm_def by simp

(* the normal version of this lemma would cause loops *)
lemma permute_eqvt_raw [eqvt_raw]:
  shows "p ∙ permute ≡ permute"
apply(simp add: fun_eq_iff permute_fun_def)
apply(subst permute_eqvt)
apply(simp)
done

lemma zero_perm_eqvt [eqvt]:
  shows "p ∙ (0::perm) = 0"
  unfolding permute_perm_def by simp

lemma add_perm_eqvt [eqvt]:
  fixes p p1 p2 :: perm
  shows "p ∙ (p1 + p2) = p ∙ p1 + p ∙ p2"
  unfolding permute_perm_def
  by (simp add: perm_eq_iff)

lemma swap_eqvt [eqvt]:
  shows "p ∙ (a ⇌ b) = (p ∙ a ⇌ p ∙ b)"
  unfolding permute_perm_def
  by (auto simp: swap_atom perm_eq_iff)

lemma uminus_eqvt [eqvt]:
  fixes p q::"perm"
  shows "p ∙ (- q) = - (p ∙ q)"
  unfolding permute_perm_def
  by (simp add: diff_add_eq_diff_diff_swap)


subsubsection {* Equivariance of Logical Operators *}

lemma eq_eqvt [eqvt]:
  shows "p ∙ (x = y) ⟷ (p ∙ x) = (p ∙ y)"
  unfolding permute_eq_iff permute_bool_def ..

lemma Not_eqvt [eqvt]:
  shows "p ∙ (¬ A) ⟷ ¬ (p ∙ A)"
  by (simp add: permute_bool_def)

lemma conj_eqvt [eqvt]:
  shows "p ∙ (A ∧ B) ⟷ (p ∙ A) ∧ (p ∙ B)"
  by (simp add: permute_bool_def)

lemma imp_eqvt [eqvt]:
  shows "p ∙ (A ⟶ B) ⟷ (p ∙ A) ⟶ (p ∙ B)"
  by (simp add: permute_bool_def)

declare imp_eqvt[folded HOL.induct_implies_def, eqvt]

lemma all_eqvt [eqvt]:
  shows "p ∙ (∀x. P x) = (∀x. (p ∙ P) x)"
  unfolding All_def
  by (perm_simp) (rule refl)

declare all_eqvt[folded HOL.induct_forall_def, eqvt]

lemma ex_eqvt [eqvt]:
  shows "p ∙ (∃x. P x) = (∃x. (p ∙ P) x)"
  unfolding Ex_def
  by (perm_simp) (rule refl)

lemma ex1_eqvt [eqvt]:
  shows "p ∙ (∃!x. P x) = (∃!x. (p ∙ P) x)"
  unfolding Ex1_def
  by (perm_simp) (rule refl)

lemma if_eqvt [eqvt]:
  shows "p ∙ (if b then x else y) = (if p ∙ b then p ∙ x else p ∙ y)"
  by (simp add: permute_fun_def permute_bool_def)

lemma True_eqvt [eqvt]:
  shows "p ∙ True = True"
  unfolding permute_bool_def ..

lemma False_eqvt [eqvt]:
  shows "p ∙ False = False"
  unfolding permute_bool_def ..

lemma disj_eqvt [eqvt]:
  shows "p ∙ (A ∨ B) ⟷ (p ∙ A) ∨ (p ∙ B)"
  by (simp add: permute_bool_def)

lemma all_eqvt2:
  shows "p ∙ (∀x. P x) = (∀x. p ∙ P (- p ∙ x))"
  by (perm_simp add: permute_minus_cancel) (rule refl)

lemma ex_eqvt2:
  shows "p ∙ (∃x. P x) = (∃x. p ∙ P (- p ∙ x))"
  by (perm_simp add: permute_minus_cancel) (rule refl)

lemma ex1_eqvt2:
  shows "p ∙ (∃!x. P x) = (∃!x. p ∙ P (- p ∙ x))"
  by (perm_simp add: permute_minus_cancel) (rule refl)

lemma the_eqvt:
  assumes unique: "∃!x. P x"
  shows "(p ∙ (THE x. P x)) = (THE x. (p ∙ P) x)"
  apply(rule the1_equality [symmetric])
  apply(rule_tac p="-p" in permute_boolE)
  apply(perm_simp add: permute_minus_cancel)
  apply(rule unique)
  apply(rule_tac p="-p" in permute_boolE)
  apply(perm_simp add: permute_minus_cancel)
  apply(rule theI'[OF unique])
  done

lemma the_eqvt2:
  assumes unique: "∃!x. P x"
  shows "(p ∙ (THE x. P x)) = (THE x. p ∙ P (- p ∙ x))"
  apply(rule the1_equality [symmetric])
  apply(simp only: ex1_eqvt2[symmetric])
  apply(simp add: permute_bool_def unique)
  apply(simp add: permute_bool_def)
  apply(rule theI'[OF unique])
  done

subsubsection {* Equivariance of Set operators *}

lemma mem_eqvt [eqvt]:
  shows "p ∙ (x ∈ A) ⟷ (p ∙ x) ∈ (p ∙ A)"
  unfolding permute_bool_def permute_set_def
  by (auto)

lemma Collect_eqvt [eqvt]:
  shows "p ∙ {x. P x} = {x. (p ∙ P) x}"
  unfolding permute_set_eq permute_fun_def
  by (auto simp: permute_bool_def)

lemma inter_eqvt [eqvt]:
  shows "p ∙ (A ∩ B) = (p ∙ A) ∩ (p ∙ B)"
  unfolding Int_def by simp

lemma Bex_eqvt [eqvt]:
  shows "p ∙ (∃x ∈ S. P x) = (∃x ∈ (p ∙ S). (p ∙ P) x)"
  unfolding Bex_def by simp

lemma Ball_eqvt [eqvt]:
  shows "p ∙ (∀x ∈ S. P x) = (∀x ∈ (p ∙ S). (p ∙ P) x)"
  unfolding Ball_def by simp

lemma image_eqvt [eqvt]:
  shows "p ∙ (f ` A) = (p ∙ f) ` (p ∙ A)"
  unfolding image_def by simp

lemma Image_eqvt [eqvt]:
  shows "p ∙ (R `` A) = (p ∙ R) `` (p ∙ A)"
  unfolding Image_def by simp

lemma UNIV_eqvt [eqvt]:
  shows "p ∙ UNIV = UNIV"
  unfolding UNIV_def 
  by (perm_simp) (rule refl)

lemma union_eqvt [eqvt]:
  shows "p ∙ (A ∪ B) = (p ∙ A) ∪ (p ∙ B)"
  unfolding Un_def by simp

lemma UNION_eqvt [eqvt]:
  shows "p ∙ (UNION A f) = (UNION (p ∙ A) (p ∙ f))"
unfolding UNION_eq
by (perm_simp) (simp)

lemma Diff_eqvt [eqvt]:
  fixes A B :: "'a::pt set"
  shows "p ∙ (A - B) = (p ∙ A) - (p ∙ B)"
  unfolding set_diff_eq by simp

lemma Compl_eqvt [eqvt]:
  fixes A :: "'a::pt set"
  shows "p ∙ (- A) = - (p ∙ A)"
  unfolding Compl_eq_Diff_UNIV by simp

lemma subset_eqvt [eqvt]:
  shows "p ∙ (S ⊆ T) ⟷ (p ∙ S) ⊆ (p ∙ T)"
  unfolding subset_eq by simp

lemma psubset_eqvt [eqvt]:
  shows "p ∙ (S ⊂ T) ⟷ (p ∙ S) ⊂ (p ∙ T)"
  unfolding psubset_eq by simp

lemma vimage_eqvt [eqvt]:
  shows "p ∙ (f -` A) = (p ∙ f) -` (p ∙ A)"
  unfolding vimage_def by simp

lemma Union_eqvt [eqvt]:
  shows "p ∙ (⋃ S) = ⋃ (p ∙ S)"
  unfolding Union_eq by simp

lemma Inter_eqvt [eqvt]:
  shows "p ∙ (⋂ S) = ⋂ (p ∙ S)"
  unfolding Inter_eq by simp

thm foldr.simps

lemma foldr_eqvt[eqvt]:
  "p ∙ foldr f xs = foldr (p ∙ f) (p ∙ xs)"
  apply(induct xs)
  apply(simp_all)
  apply(perm_simp exclude: foldr)
  apply(simp)
  done

(* FIXME: eqvt attribute *)
lemma Sigma_eqvt:
  shows "(p ∙ (X × Y)) = (p ∙ X) × (p ∙ Y)"
unfolding Sigma_def
unfolding SUP_def
by (perm_simp) (rule refl)

text {* 
  In order to prove that lfp is equivariant we need two
  auxiliary classes which specify that (op <=) and
  Inf are equivariant. Instances for bool and fun are 
  given.
*}

class le_eqvt = order +
  assumes le_eqvt [eqvt]: "p ∙ (x ≤ y) = ((p ∙ x) ≤ (p ∙ (y::('a::{pt, order}))))"

class inf_eqvt = Inf +
  assumes inf_eqvt [eqvt]: "p ∙ (Inf X) = Inf (p ∙ (X::('a::{pt, complete_lattice}) set))"

instantiation bool :: le_eqvt
begin

instance 
apply standard
unfolding le_bool_def
apply(perm_simp)
apply(rule refl)
done

end

instantiation "fun" :: (pt, le_eqvt) le_eqvt
begin

instance 
apply standard
unfolding le_fun_def
apply(perm_simp)
apply(rule refl)
done 

end

instantiation bool :: inf_eqvt
begin

instance 
apply standard
unfolding Inf_bool_def
apply(perm_simp)
apply(rule refl)
done

end

instantiation "fun" :: (pt, inf_eqvt) inf_eqvt
begin

instance 
apply standard
unfolding Inf_fun_def INF_def
apply(perm_simp)
apply(rule refl)
done 

end

lemma lfp_eqvt [eqvt]:
  fixes F::"('a ⇒ 'b) ⇒ ('a::pt ⇒ 'b::{inf_eqvt, le_eqvt})"
  shows "p ∙ (lfp F) = lfp (p ∙ F)"
unfolding lfp_def
by simp

lemma finite_eqvt [eqvt]:
  shows "p ∙ finite A = finite (p ∙ A)"
unfolding finite_def
by simp

lemma fun_upd_eqvt[eqvt]:
  shows "p ∙ (f(x := y)) = (p ∙ f)((p ∙ x) := (p ∙ y))"
unfolding fun_upd_def
by simp

lemma comp_eqvt [eqvt]:
  shows "p ∙ (f ∘ g) = (p ∙ f) ∘ (p ∙ g)"
unfolding comp_def
by simp

subsubsection {* Equivariance for product operations *}

lemma fst_eqvt [eqvt]:
  shows "p ∙ (fst x) = fst (p ∙ x)"
  by (cases x) simp

lemma snd_eqvt [eqvt]:
  shows "p ∙ (snd x) = snd (p ∙ x)"
  by (cases x) simp

lemma split_eqvt [eqvt]: 
  shows "p ∙ (case_prod P x) = case_prod (p ∙ P) (p ∙ x)"
  unfolding split_def
  by simp


subsubsection {* Equivariance for list operations *}

lemma append_eqvt [eqvt]:
  shows "p ∙ (xs @ ys) = (p ∙ xs) @ (p ∙ ys)"
  by (induct xs) auto

lemma rev_eqvt [eqvt]:
  shows "p ∙ (rev xs) = rev (p ∙ xs)"
  by (induct xs) (simp_all add: append_eqvt)

lemma map_eqvt [eqvt]: 
  shows "p ∙ (map f xs) = map (p ∙ f) (p ∙ xs)"
  by (induct xs) (simp_all)

lemma removeAll_eqvt [eqvt]:
  shows "p ∙ (removeAll x xs) = removeAll (p ∙ x) (p ∙ xs)"
  by (induct xs) (auto)

lemma filter_eqvt [eqvt]:
  shows "p ∙ (filter f xs) = filter (p ∙ f) (p ∙ xs)"
apply(induct xs)
apply(simp)
apply(simp only: filter.simps permute_list.simps if_eqvt)
apply(simp only: permute_fun_app_eq)
done

lemma distinct_eqvt [eqvt]:
  shows "p ∙ (distinct xs) = distinct (p ∙ xs)"
apply(induct xs)
apply(simp add: permute_bool_def)
apply(simp add: conj_eqvt Not_eqvt mem_eqvt set_eqvt)
done

lemma length_eqvt [eqvt]:
  shows "p ∙ (length xs) = length (p ∙ xs)"
by (induct xs) (simp_all add: permute_pure)


subsubsection {* Equivariance for @{typ "'a option"} *}

lemma map_option_eqvt[eqvt]:
  shows "p ∙ (map_option f x) = map_option (p ∙ f) (p ∙ x)"
  by (cases x) (simp_all)


subsubsection {* Equivariance for @{typ "'a fset"} *}

lemma in_fset_eqvt [eqvt]:
  shows "(p ∙ (x |∈| S)) = ((p ∙ x) |∈| (p ∙ S))"
unfolding in_fset by simp

lemma union_fset_eqvt [eqvt]:
  shows "(p ∙ (S |∪| T)) = ((p ∙ S) |∪| (p ∙ T))"
  by (induct S) (simp_all)

lemma inter_fset_eqvt [eqvt]:
  shows "(p ∙ (S |∩| T)) = ((p ∙ S) |∩| (p ∙ T))"
  apply(descending)
  unfolding list_eq_def inter_list_def
  apply(simp)
  done

lemma subset_fset_eqvt [eqvt]:
  shows "(p ∙ (S |⊆| T)) = ((p ∙ S) |⊆| (p ∙ T))"
  apply(descending)
  unfolding sub_list_def
  apply(simp)
  done
  
lemma map_fset_eqvt [eqvt]: 
  shows "p ∙ (map_fset f S) = map_fset (p ∙ f) (p ∙ S)"
  by (lifting map_eqvt)

subsubsection {* Equivariance for @{typ "('a, 'b) finfun"} *}

lemma finfun_update_eqvt [eqvt]:
  shows "(p ∙ (finfun_update f a b)) = finfun_update (p ∙ f) (p ∙ a) (p ∙ b)"
by (transfer) (simp)

lemma finfun_const_eqvt [eqvt]:
  shows "(p ∙ (finfun_const b)) = finfun_const (p ∙ b)"
by (transfer) (simp)

lemma finfun_apply_eqvt [eqvt]:
  shows "(p ∙ (finfun_apply f b)) = finfun_apply (p ∙ f) (p ∙ b)"
by (transfer) (simp)


section {* Supp, Freshness and Supports *}

context pt
begin

definition
  supp :: "'a ⇒ atom set"
where
  "supp x = {a. infinite {b. (a ⇌ b) ∙ x ≠ x}}"

definition
  fresh :: "atom ⇒ 'a ⇒ bool" ("_ ♯ _" [55, 55] 55)
where   
  "a ♯ x ≡ a ∉ supp x"

end

lemma supp_conv_fresh: 
  shows "supp x = {a. ¬ a ♯ x}"
  unfolding fresh_def by simp

lemma swap_rel_trans:
  assumes "sort_of a = sort_of b"
  assumes "sort_of b = sort_of c"
  assumes "(a ⇌ c) ∙ x = x"
  assumes "(b ⇌ c) ∙ x = x"
  shows "(a ⇌ b) ∙ x = x"
proof (cases)
  assume "a = b ∨ c = b"
  with assms show "(a ⇌ b) ∙ x = x" by auto
next
  assume *: "¬ (a = b ∨ c = b)"
  have "((a ⇌ c) + (b ⇌ c) + (a ⇌ c)) ∙ x = x"
    using assms by simp
  also have "(a ⇌ c) + (b ⇌ c) + (a ⇌ c) = (a ⇌ b)"
    using assms * by (simp add: swap_triple)
  finally show "(a ⇌ b) ∙ x = x" .
qed

lemma swap_fresh_fresh:
  assumes a: "a ♯ x" 
  and     b: "b ♯ x"
  shows "(a ⇌ b) ∙ x = x"
proof (cases)
  assume asm: "sort_of a = sort_of b" 
  have "finite {c. (a ⇌ c) ∙ x ≠ x}" "finite {c. (b ⇌ c) ∙ x ≠ x}" 
    using a b unfolding fresh_def supp_def by simp_all
  then have "finite ({c. (a ⇌ c) ∙ x ≠ x} ∪ {c. (b ⇌ c) ∙ x ≠ x})" by simp
  then obtain c 
    where "(a ⇌ c) ∙ x = x" "(b ⇌ c) ∙ x = x" "sort_of c = sort_of b"
    by (rule obtain_atom) (auto)
  then show "(a ⇌ b) ∙ x = x" using asm by (rule_tac swap_rel_trans) (simp_all)
next
  assume "sort_of a ≠ sort_of b"
  then show "(a ⇌ b) ∙ x = x" by simp
qed


subsection {* supp and fresh are equivariant *}


lemma supp_eqvt [eqvt]:
  shows "p ∙ (supp x) = supp (p ∙ x)"
  unfolding supp_def by simp

lemma fresh_eqvt [eqvt]:
  shows "p ∙ (a ♯ x) = (p ∙ a) ♯ (p ∙ x)"
  unfolding fresh_def by simp

lemma fresh_permute_iff:
  shows "(p ∙ a) ♯ (p ∙ x) ⟷ a ♯ x"
  by (simp only: fresh_eqvt[symmetric] permute_bool_def)

lemma fresh_permute_left:
  shows "a ♯ p ∙ x ⟷ - p ∙ a ♯ x"
proof
  assume "a ♯ p ∙ x"
  then have "- p ∙ a ♯ - p ∙ p ∙ x" by (simp only: fresh_permute_iff)
  then show "- p ∙ a ♯ x" by simp
next
  assume "- p ∙ a ♯ x"
  then have "p ∙ - p ∙ a ♯ p ∙ x" by (simp only: fresh_permute_iff)
  then show "a ♯ p ∙ x" by simp
qed


section {* supports *}

definition
  supports :: "atom set ⇒ 'a::pt ⇒ bool" (infixl "supports" 80)
where  
  "S supports x ≡ ∀a b. (a ∉ S ∧ b ∉ S ⟶ (a ⇌ b) ∙ x = x)"

lemma supp_is_subset:
  fixes S :: "atom set"
  and   x :: "'a::pt"
  assumes a1: "S supports x"
  and     a2: "finite S"
  shows "(supp x) ⊆ S"
proof (rule ccontr)
  assume "¬ (supp x ⊆ S)"
  then obtain a where b1: "a ∈ supp x" and b2: "a ∉ S" by auto
  from a1 b2 have "∀b. b ∉ S ⟶ (a ⇌ b) ∙ x = x" unfolding supports_def by auto
  then have "{b. (a ⇌ b) ∙ x ≠ x} ⊆ S" by auto
  with a2 have "finite {b. (a ⇌ b) ∙ x ≠ x}" by (simp add: finite_subset)
  then have "a ∉ (supp x)" unfolding supp_def by simp
  with b1 show False by simp
qed

lemma supports_finite:
  fixes S :: "atom set"
  and   x :: "'a::pt"
  assumes a1: "S supports x"
  and     a2: "finite S"
  shows "finite (supp x)"
proof -
  have "(supp x) ⊆ S" using a1 a2 by (rule supp_is_subset)
  then show "finite (supp x)" using a2 by (simp add: finite_subset)
qed

lemma supp_supports:
  fixes x :: "'a::pt"
  shows "(supp x) supports x"
unfolding supports_def
proof (intro strip)
  fix a b
  assume "a ∉ (supp x) ∧ b ∉ (supp x)"
  then have "a ♯ x" and "b ♯ x" by (simp_all add: fresh_def)
  then show "(a ⇌ b) ∙ x = x" by (simp add: swap_fresh_fresh)
qed

lemma supports_fresh:
  fixes x :: "'a::pt"
  assumes a1: "S supports x"
  and     a2: "finite S"
  and     a3: "a ∉ S"
  shows "a ♯ x"
unfolding fresh_def
proof -
  have "(supp x) ⊆ S" using a1 a2 by (rule supp_is_subset)
  then show "a ∉ (supp x)" using a3 by auto
qed

lemma supp_is_least_supports:
  fixes S :: "atom set"
  and   x :: "'a::pt"
  assumes  a1: "S supports x"
  and      a2: "finite S"
  and      a3: "⋀S'. finite S' ⟹ (S' supports x) ⟹ S ⊆ S'"
  shows "(supp x) = S"
proof (rule equalityI)
  show "(supp x) ⊆ S" using a1 a2 by (rule supp_is_subset)
  with a2 have fin: "finite (supp x)" by (rule rev_finite_subset)
  have "(supp x) supports x" by (rule supp_supports)
  with fin a3 show "S ⊆ supp x" by blast
qed


lemma subsetCI: 
  shows "(⋀x. x ∈ A ⟹ x ∉ B ⟹ False) ⟹ A ⊆ B"
  by auto

lemma finite_supp_unique:
  assumes a1: "S supports x"
  assumes a2: "finite S"
  assumes a3: "⋀a b. ⟦a ∈ S; b ∉ S; sort_of a = sort_of b⟧ ⟹ (a ⇌ b) ∙ x ≠ x"
  shows "(supp x) = S"
  using a1 a2
proof (rule supp_is_least_supports)
  fix S'
  assume "finite S'" and "S' supports x"
  show "S ⊆ S'"
  proof (rule subsetCI)
    fix a
    assume "a ∈ S" and "a ∉ S'"
    have "finite (S ∪ S')"
      using `finite S` `finite S'` by simp
    then obtain b where "b ∉ S ∪ S'" and "sort_of b = sort_of a"
      by (rule obtain_atom)
    then have "b ∉ S" and "b ∉ S'"  and "sort_of a = sort_of b"
      by simp_all
    then have "(a ⇌ b) ∙ x = x"
      using `a ∉ S'` `S' supports x` by (simp add: supports_def)
    moreover have "(a ⇌ b) ∙ x ≠ x"
      using `a ∈ S` `b ∉ S` `sort_of a = sort_of b`
      by (rule a3)
    ultimately show "False" by simp
  qed
qed

section {* Support w.r.t. relations *}

text {* 
  This definition is used for unquotient types, where
  alpha-equivalence does not coincide with equality.
*}

definition 
  "supp_rel R x = {a. infinite {b. ¬(R ((a ⇌ b) ∙ x) x)}}"



section {* Finitely-supported types *}

class fs = pt +
  assumes finite_supp: "finite (supp x)"

lemma pure_supp: 
  fixes x::"'a::pure"
  shows "supp x = {}"
  unfolding supp_def by (simp add: permute_pure)

lemma pure_fresh:
  fixes x::"'a::pure"
  shows "a ♯ x"
  unfolding fresh_def by (simp add: pure_supp)

instance pure < fs
  by standard (simp add: pure_supp)


subsection  {* Type @{typ atom} is finitely-supported. *}

lemma supp_atom:
  shows "supp a = {a}"
apply (rule finite_supp_unique)
apply (clarsimp simp add: supports_def)
apply simp
apply simp
done

lemma fresh_atom: 
  shows "a ♯ b ⟷ a ≠ b"
  unfolding fresh_def supp_atom by simp

instance atom :: fs
  by standard (simp add: supp_atom)


section {* Type @{typ perm} is finitely-supported. *}

lemma perm_swap_eq:
  shows "(a ⇌ b) ∙ p = p ⟷ (p ∙ (a ⇌ b)) = (a ⇌ b)"
unfolding permute_perm_def
by (metis add_diff_cancel minus_perm_def)

lemma supports_perm: 
  shows "{a. p ∙ a ≠ a} supports p"
  unfolding supports_def
  unfolding perm_swap_eq
  by (simp add: swap_eqvt)

lemma finite_perm_lemma: 
  shows "finite {a::atom. p ∙ a ≠ a}"
  using finite_Rep_perm [of p]
  unfolding permute_atom_def .

lemma supp_perm:
  shows "supp p = {a. p ∙ a ≠ a}"
apply (rule finite_supp_unique)
apply (rule supports_perm)
apply (rule finite_perm_lemma)
apply (simp add: perm_swap_eq swap_eqvt)
apply (auto simp: perm_eq_iff swap_atom)
done

lemma fresh_perm: 
  shows "a ♯ p ⟷ p ∙ a = a"
  unfolding fresh_def 
  by (simp add: supp_perm)

lemma supp_swap:
  shows "supp (a ⇌ b) = (if a = b ∨ sort_of a ≠ sort_of b then {} else {a, b})"
  by (auto simp: supp_perm swap_atom)

lemma fresh_swap:
  shows "a ♯ (b ⇌ c) ⟷ (sort_of b ≠ sort_of c) ∨ b = c ∨ (a ♯ b ∧ a ♯ c)"
  by (simp add: fresh_def supp_swap supp_atom)

lemma fresh_zero_perm: 
  shows "a ♯ (0::perm)"
  unfolding fresh_perm by simp

lemma supp_zero_perm: 
  shows "supp (0::perm) = {}"
  unfolding supp_perm by simp

lemma fresh_plus_perm:
  fixes p q::perm
  assumes "a ♯ p" "a ♯ q"
  shows "a ♯ (p + q)"
  using assms
  unfolding fresh_def
  by (auto simp: supp_perm)

lemma supp_plus_perm:
  fixes p q::perm
  shows "supp (p + q) ⊆ supp p ∪ supp q"
  by (auto simp: supp_perm)

lemma fresh_minus_perm:
  fixes p::perm
  shows "a ♯ (- p) ⟷ a ♯ p"
  unfolding fresh_def
  unfolding supp_perm
  apply(simp)
  apply(metis permute_minus_cancel)
  done

lemma supp_minus_perm:
  fixes p::perm
  shows "supp (- p) = supp p"
  unfolding supp_conv_fresh
  by (simp add: fresh_minus_perm)

lemma plus_perm_eq:
  fixes p q::"perm"
  assumes asm: "supp p ∩ supp q = {}"
  shows "p + q = q + p"
unfolding perm_eq_iff
proof
  fix a::"atom"
  show "(p + q) ∙ a = (q + p) ∙ a"
  proof -
    { assume "a ∉ supp p" "a ∉ supp q"
      then have "(p + q) ∙ a = (q + p) ∙ a" 
        by (simp add: supp_perm)
    }
    moreover
    { assume a: "a ∈ supp p" "a ∉ supp q"
      then have "p ∙ a ∈ supp p" by (simp add: supp_perm)
      then have "p ∙ a ∉ supp q" using asm by auto
      with a have "(p + q) ∙ a = (q + p) ∙ a" 
        by (simp add: supp_perm)
    }
    moreover
    { assume a: "a ∉ supp p" "a ∈ supp q"
      then have "q ∙ a ∈ supp q" by (simp add: supp_perm)
      then have "q ∙ a ∉ supp p" using asm by auto 
      with a have "(p + q) ∙ a = (q + p) ∙ a" 
        by (simp add: supp_perm)
    }
    ultimately show "(p + q) ∙ a = (q + p) ∙ a" 
      using asm by blast
  qed
qed

lemma supp_plus_perm_eq:
  fixes p q::perm
  assumes asm: "supp p ∩ supp q = {}"
  shows "supp (p + q) = supp p ∪ supp q"
proof -
  { fix a::"atom"
    assume "a ∈ supp p"
    then have "a ∉ supp q" using asm by auto
    then have "a ∈ supp (p + q)" using `a ∈ supp p` 
      by (simp add: supp_perm)
  }
  moreover
  { fix a::"atom"
    assume "a ∈ supp q"
    then have "a ∉ supp p" using asm by auto
    then have "a ∈ supp (q + p)" using `a ∈ supp q` 
      by (simp add: supp_perm)
    then have "a ∈ supp (p + q)" using asm plus_perm_eq
      by metis
  }
  ultimately have "supp p ∪ supp q ⊆ supp (p + q)"
    by blast
  then show "supp (p + q) = supp p ∪ supp q" using supp_plus_perm
    by blast
qed

lemma perm_eq_iff2:
  fixes p q :: "perm"
  shows "p = q ⟷ (∀a::atom ∈ supp p ∪ supp q. p ∙ a = q ∙ a)"
  unfolding perm_eq_iff
  apply(auto)
  apply(case_tac "a ♯ p ∧ a ♯ q")
  apply(simp add: fresh_perm)
  apply(simp add: fresh_def)
  done


instance perm :: fs
  by standard (simp add: supp_perm finite_perm_lemma)



section {* Finite Support instances for other types *}


subsection {* Type @{typ "'a × 'b"} is finitely-supported. *}

lemma supp_Pair: 
  shows "supp (x, y) = supp x ∪ supp y"
  by (simp add: supp_def Collect_imp_eq Collect_neg_eq)

lemma fresh_Pair: 
  shows "a ♯ (x, y) ⟷ a ♯ x ∧ a ♯ y"
  by (simp add: fresh_def supp_Pair)

lemma supp_Unit:
  shows "supp () = {}"
  by (simp add: supp_def)

lemma fresh_Unit:
  shows "a ♯ ()"
  by (simp add: fresh_def supp_Unit)

instance prod :: (fs, fs) fs
apply standard
apply (case_tac x)
apply (simp add: supp_Pair finite_supp)
done


subsection {* Type @{typ "'a + 'b"} is finitely supported *}

lemma supp_Inl: 
  shows "supp (Inl x) = supp x"
  by (simp add: supp_def)

lemma supp_Inr: 
  shows "supp (Inr x) = supp x"
  by (simp add: supp_def)

lemma fresh_Inl: 
  shows "a ♯ Inl x ⟷ a ♯ x"
  by (simp add: fresh_def supp_Inl)

lemma fresh_Inr: 
  shows "a ♯ Inr y ⟷ a ♯ y"
  by (simp add: fresh_def supp_Inr)

instance sum :: (fs, fs) fs
apply standard
apply (case_tac x)
apply (simp_all add: supp_Inl supp_Inr finite_supp)
done


subsection {* Type @{typ "'a option"} is finitely supported *}

lemma supp_None: 
  shows "supp None = {}"
by (simp add: supp_def)

lemma supp_Some: 
  shows "supp (Some x) = supp x"
  by (simp add: supp_def)

lemma fresh_None: 
  shows "a ♯ None"
  by (simp add: fresh_def supp_None)

lemma fresh_Some: 
  shows "a ♯ Some x ⟷ a ♯ x"
  by (simp add: fresh_def supp_Some)

instance option :: (fs) fs
apply standard
apply (induct_tac x)
apply (simp_all add: supp_None supp_Some finite_supp)
done


subsubsection {* Type @{typ "'a list"} is finitely supported *}

lemma supp_Nil: 
  shows "supp [] = {}"
  by (simp add: supp_def)

lemma fresh_Nil: 
  shows "a ♯ []"
  by (simp add: fresh_def supp_Nil)

lemma supp_Cons: 
  shows "supp (x # xs) = supp x ∪ supp xs"
by (simp add: supp_def Collect_imp_eq Collect_neg_eq)

lemma fresh_Cons: 
  shows "a ♯ (x # xs) ⟷ a ♯ x ∧ a ♯ xs"
  by (simp add: fresh_def supp_Cons)

lemma supp_append:
  shows "supp (xs @ ys) = supp xs ∪ supp ys"
  by (induct xs) (auto simp: supp_Nil supp_Cons)

lemma fresh_append:
  shows "a ♯ (xs @ ys) ⟷ a ♯ xs ∧ a ♯ ys"
  by (induct xs) (simp_all add: fresh_Nil fresh_Cons)

lemma supp_rev:
  shows "supp (rev xs) = supp xs"
  by (induct xs) (auto simp: supp_append supp_Cons supp_Nil)

lemma fresh_rev:
  shows "a ♯ rev xs ⟷ a ♯ xs"
  by (induct xs) (auto simp: fresh_append fresh_Cons fresh_Nil)

lemma supp_removeAll:
  fixes x::"atom"
  shows "supp (removeAll x xs) = supp xs - {x}"
  by (induct xs)
     (auto simp: supp_Nil supp_Cons supp_atom)

lemma supp_of_atom_list:
  fixes as::"atom list"
  shows "supp as = set as"
by (induct as)
   (simp_all add: supp_Nil supp_Cons supp_atom)

instance list :: (fs) fs
apply standard
apply (induct_tac x)
apply (simp_all add: supp_Nil supp_Cons finite_supp)
done


section {* Support and Freshness for Applications *}

lemma fresh_conv_MOST: 
  shows "a ♯ x ⟷ (MOST b. (a ⇌ b) ∙ x = x)"
  unfolding fresh_def supp_def 
  unfolding MOST_iff_cofinite by simp

lemma fresh_fun_app:
  assumes "a ♯ f" and "a ♯ x" 
  shows "a ♯ f x"
  using assms
  unfolding fresh_conv_MOST
  unfolding permute_fun_app_eq
  by (elim MOST_rev_mp) (simp)

lemma supp_fun_app:
  shows "supp (f x) ⊆ (supp f) ∪ (supp x)"
  using fresh_fun_app
  unfolding fresh_def
  by auto


subsection {* Equivariance Predicate @{text eqvt} and @{text eqvt_at}*}

definition
  "eqvt f ≡ ∀p. p ∙ f = f"

lemma eqvt_boolI:
  fixes f::"bool"
  shows "eqvt f"
unfolding eqvt_def by (simp add: permute_bool_def)


text {* equivariance of a function at a given argument *}

definition
 "eqvt_at f x ≡ ∀p. p ∙ (f x) = f (p ∙ x)"

lemma eqvtI:
  shows "(⋀p. p ∙ f ≡ f) ⟹ eqvt f"
unfolding eqvt_def
by simp

lemma eqvt_at_perm:
  assumes "eqvt_at f x"
  shows "eqvt_at f (q ∙ x)"
proof -
  { fix p::"perm"
    have "p ∙ (f (q ∙ x)) = p ∙ q ∙ (f x)"
      using assms by (simp add: eqvt_at_def)
    also have "… = (p + q) ∙ (f x)" by simp
    also have "… = f ((p + q) ∙ x)"
      using assms by (simp only: eqvt_at_def)
    finally have "p ∙ (f (q ∙ x)) = f (p ∙ q ∙ x)" by simp } 
  then show "eqvt_at f (q ∙ x)" unfolding eqvt_at_def
    by simp
qed

lemma supp_fun_eqvt:
  assumes a: "eqvt f"
  shows "supp f = {}"
  using a
  unfolding eqvt_def
  unfolding supp_def 
  by simp

lemma fresh_fun_eqvt:
  assumes a: "eqvt f"
  shows "a ♯ f"
  using a
  unfolding fresh_def
  by (simp add: supp_fun_eqvt)

lemma fresh_fun_eqvt_app:
  assumes a: "eqvt f"
  shows "a ♯ x ⟹ a ♯ f x"
proof -
  from a have "supp f = {}" by (simp add: supp_fun_eqvt)
  then show "a ♯ x ⟹ a ♯ f x"
    unfolding fresh_def
    using supp_fun_app by auto
qed

lemma supp_fun_app_eqvt:
  assumes a: "eqvt f"
  shows "supp (f x) ⊆ supp x"
  using fresh_fun_eqvt_app[OF a]
  unfolding fresh_def
  by auto

lemma supp_eqvt_at:
  assumes asm: "eqvt_at f x"
  and     fin: "finite (supp x)"
  shows "supp (f x) ⊆ supp x"
apply(rule supp_is_subset)
unfolding supports_def
unfolding fresh_def[symmetric]
using asm
apply(simp add: eqvt_at_def)
apply(simp add: swap_fresh_fresh)
apply(rule fin)
done

lemma finite_supp_eqvt_at:
  assumes asm: "eqvt_at f x"
  and     fin: "finite (supp x)"
  shows "finite (supp (f x))"
apply(rule finite_subset)
apply(rule supp_eqvt_at[OF asm fin])
apply(rule fin)
done

lemma fresh_eqvt_at:
  assumes asm: "eqvt_at f x"
  and     fin: "finite (supp x)"
  and     fresh: "a ♯ x"
  shows "a ♯ f x"
using fresh
unfolding fresh_def
using supp_eqvt_at[OF asm fin]
by auto

text {* for handling of freshness of functions *}

simproc_setup fresh_fun_simproc ("a ♯ (f::'a::pt ⇒'b::pt)") = {* fn _ => fn ctxt => fn ctrm =>
  let 
    val _ $ _ $ f = Thm.term_of ctrm
  in
    case (Term.add_frees f [], Term.add_vars f []) of
      ([], []) => SOME(@{thm fresh_fun_eqvt[simplified eqvt_def, THEN Eq_TrueI]})
    | (x::_, []) =>
      let
        val argx = Free x
        val absf = absfree x f
        val cty_inst =
          [SOME (Thm.ctyp_of ctxt (fastype_of argx)), SOME (Thm.ctyp_of ctxt (fastype_of f))]
        val ctrm_inst = [NONE, SOME (Thm.cterm_of ctxt absf), SOME (Thm.cterm_of ctxt argx)] 
        val thm = Thm.instantiate' cty_inst ctrm_inst @{thm fresh_fun_app}
      in
        SOME(thm RS @{thm Eq_TrueI}) 
      end  
    | (_, _) => NONE
  end
*}

subsection {* helper functions for nominal_functions *}

lemma THE_defaultI2:
  assumes "∃!x. P x" "⋀x. P x ⟹ Q x"
  shows "Q (THE_default d P)"
by (iprover intro: assms THE_defaultI')

lemma the_default_eqvt:
  assumes unique: "∃!x. P x"
  shows "(p ∙ (THE_default d P)) = (THE_default (p ∙ d) (p ∙ P))"
  apply(rule THE_default1_equality [symmetric])
  apply(rule_tac p="-p" in permute_boolE)
  apply(simp add: ex1_eqvt)
  apply(rule unique)
  apply(rule_tac p="-p" in permute_boolE)
  apply(rule subst[OF permute_fun_app_eq])
  apply(simp)
  apply(rule THE_defaultI'[OF unique])
  done

lemma fundef_ex1_eqvt:
  fixes x::"'a::pt"
  assumes f_def: "f == (λx::'a. THE_default (d x) (G x))"
  assumes eqvt: "eqvt G"
  assumes ex1: "∃!y. G x y"
  shows "(p ∙ (f x)) = f (p ∙ x)"
  apply(simp only: f_def)
  apply(subst the_default_eqvt)
  apply(rule ex1)
  apply(rule THE_default1_equality [symmetric])
  apply(rule_tac p="-p" in permute_boolE)
  apply(perm_simp add: permute_minus_cancel)
  using eqvt[simplified eqvt_def]
  apply(simp)
  apply(rule ex1)
  apply(rule THE_defaultI2) 
  apply(rule_tac p="-p" in permute_boolE)
  apply(perm_simp add: permute_minus_cancel)
  apply(rule ex1)
  apply(perm_simp)
  using eqvt[simplified eqvt_def]
  apply(simp)
  done

lemma fundef_ex1_eqvt_at:
  fixes x::"'a::pt"
  assumes f_def: "f == (λx::'a. THE_default (d x) (G x))"
  assumes eqvt: "eqvt G"
  assumes ex1: "∃!y. G x y"
  shows "eqvt_at f x"
  unfolding eqvt_at_def
  using assms
  by (auto intro: fundef_ex1_eqvt)

lemma fundef_ex1_prop:
  fixes x::"'a::pt"
  assumes f_def: "f == (λx::'a. THE_default (d x) (G x))"
  assumes P_all: "⋀x y. G x y ⟹ P x y"
  assumes ex1: "∃!y. G x y"
  shows "P x (f x)"
  unfolding f_def
  using ex1
  apply(erule_tac ex1E)
  apply(rule THE_defaultI2)
  apply(blast)
  apply(rule P_all)
  apply(assumption)
  done


section {* Support of Finite Sets of Finitely Supported Elements *}

text {* support and freshness for atom sets *}

lemma supp_finite_atom_set:
  fixes S::"atom set"
  assumes "finite S"
  shows "supp S = S"
  apply(rule finite_supp_unique)
  apply(simp add: supports_def)
  apply(simp add: swap_set_not_in)
  apply(rule assms)
  apply(simp add: swap_set_in)
done

lemma supp_cofinite_atom_set:
  fixes S::"atom set"
  assumes "finite (UNIV - S)"
  shows "supp S = (UNIV - S)"
  apply(rule finite_supp_unique)
  apply(simp add: supports_def)
  apply(simp add: swap_set_both_in)
  apply(rule assms)
  apply(subst swap_commute)
  apply(simp add: swap_set_in)
done

lemma fresh_finite_atom_set:
  fixes S::"atom set"
  assumes "finite S"
  shows "a ♯ S ⟷ a ∉ S"
  unfolding fresh_def
  by (simp add: supp_finite_atom_set[OF assms])

lemma fresh_minus_atom_set:
  fixes S::"atom set"
  assumes "finite S"
  shows "a ♯ S - T ⟷ (a ∉ T ⟶ a ♯ S)"
  unfolding fresh_def
  by (auto simp: supp_finite_atom_set assms)

lemma Union_supports_set:
  shows "(⋃x ∈ S. supp x) supports S"
proof -
  { fix a b
    have "∀x ∈ S. (a ⇌ b) ∙ x = x ⟹ (a ⇌ b) ∙ S = S"
      unfolding permute_set_def by force
  }
  then show "(⋃x ∈ S. supp x) supports S"
    unfolding supports_def 
    by (simp add: fresh_def[symmetric] swap_fresh_fresh)
qed

lemma Union_of_finite_supp_sets:
  fixes S::"('a::fs set)"
  assumes fin: "finite S"   
  shows "finite (⋃x∈S. supp x)"
  using fin by (induct) (auto simp: finite_supp)

lemma Union_included_in_supp:
  fixes S::"('a::fs set)"
  assumes fin: "finite S"
  shows "(⋃x∈S. supp x) ⊆ supp S"
proof -
  have eqvt: "eqvt (λS. ⋃x ∈ S. supp x)" 
    unfolding eqvt_def by simp 
  have "(⋃x∈S. supp x) = supp (⋃x∈S. supp x)"
    by (rule supp_finite_atom_set[symmetric]) (rule Union_of_finite_supp_sets[OF fin])
  also have "… ⊆ supp S" using eqvt
    by (rule supp_fun_app_eqvt)
  finally show "(⋃x∈S. supp x) ⊆ supp S" .  
qed

lemma supp_of_finite_sets:
  fixes S::"('a::fs set)"
  assumes fin: "finite S"
  shows "(supp S) = (⋃x∈S. supp x)"
apply(rule subset_antisym)
apply(rule supp_is_subset)
apply(rule Union_supports_set)
apply(rule Union_of_finite_supp_sets[OF fin])
apply(rule Union_included_in_supp[OF fin])
done

lemma finite_sets_supp:
  fixes S::"('a::fs set)"
  assumes "finite S"
  shows "finite (supp S)"
using assms
by (simp only: supp_of_finite_sets Union_of_finite_supp_sets)

lemma supp_of_finite_union:
  fixes S T::"('a::fs) set"
  assumes fin1: "finite S"
  and     fin2: "finite T"
  shows "supp (S ∪ T) = supp S ∪ supp T"
  using fin1 fin2
  by (simp add: supp_of_finite_sets)

lemma fresh_finite_union:
  fixes S T::"('a::fs) set"
  assumes fin1: "finite S"
  and     fin2: "finite T"
  shows "a ♯ (S ∪ T) ⟷ a ♯ S ∧ a ♯ T"
  unfolding fresh_def
  by (simp add: supp_of_finite_union[OF fin1 fin2])

lemma supp_of_finite_insert:
  fixes S::"('a::fs) set"
  assumes fin:  "finite S"
  shows "supp (insert x S) = supp x ∪ supp S"
  using fin
  by (simp add: supp_of_finite_sets)

lemma fresh_finite_insert:
  fixes S::"('a::fs) set"
  assumes fin:  "finite S"
  shows "a ♯ (insert x S) ⟷ a ♯ x ∧ a ♯ S"
  using fin unfolding fresh_def
  by (simp add: supp_of_finite_insert)

lemma supp_set_empty:
  shows "supp {} = {}"
  unfolding supp_def
  by (simp add: empty_eqvt)

lemma fresh_set_empty:
  shows "a ♯ {}"
  by (simp add: fresh_def supp_set_empty)

lemma supp_set:
  fixes xs :: "('a::fs) list"
  shows "supp (set xs) = supp xs"
apply(induct xs)
apply(simp add: supp_set_empty supp_Nil)
apply(simp add: supp_Cons supp_of_finite_insert)
done

lemma fresh_set:
  fixes xs :: "('a::fs) list"
  shows "a ♯ (set xs) ⟷ a ♯ xs"
unfolding fresh_def
by (simp add: supp_set)


subsection {* Type @{typ "'a multiset"} is finitely supported *}

lemma set_mset_eqvt [eqvt]:
  shows "p ∙ (set_mset M) = set_mset (p ∙ M)"
by (induct M) (simp_all add: insert_eqvt empty_eqvt)

lemma supp_set_mset:
  shows "supp (set_mset M) ⊆ supp M"
  apply (rule supp_fun_app_eqvt)
  unfolding eqvt_def
  apply(perm_simp)
  apply(simp)
  done

lemma Union_finite_multiset:
  fixes M::"'a::fs multiset"
  shows "finite (⋃{supp x | x. x ∈# M})"
proof - 
  have "finite (⋃(supp ` {x. x ∈# M}))"
    by (induct M) (simp_all add: Collect_imp_eq Collect_neg_eq finite_supp)
  then show "finite (⋃{supp x | x. x ∈# M})"
    by (simp only: image_Collect)
qed

lemma Union_supports_multiset:
  shows "⋃{supp x | x. x :# M} supports M"
proof -
  have sw: "⋀a b. ((⋀x. x :# M ⟹ (a ⇌ b) ∙ x = x) ⟹ (a ⇌ b) ∙ M = M)"
    unfolding permute_multiset_def 
    apply(induct M)
    apply(simp_all)
    done
  show "(⋃{supp x | x. x :# M}) supports M"
    unfolding supports_def
    apply(clarify)
    apply(rule sw)
    apply(rule swap_fresh_fresh)
    apply(simp_all only: fresh_def)
    apply(auto)
    apply(metis neq0_conv)+
    done
qed

lemma Union_included_multiset:
  fixes M::"('a::fs multiset)" 
  shows "(⋃{supp x | x. x ∈# M}) ⊆ supp M"
proof -
  have "(⋃{supp x | x. x ∈# M}) = (⋃{supp x | x. x ∈ set_mset M})" by simp
  also have "... ⊆ (⋃x ∈ set_mset M. supp x)" by auto
  also have "... = supp (set_mset M)"
    by (simp add: supp_of_finite_sets)
  also have " ... ⊆ supp M" by (rule supp_set_mset)
  finally show "(⋃{supp x | x. x ∈# M}) ⊆ supp M" .
qed

lemma supp_of_multisets:
  fixes M::"('a::fs multiset)"
  shows "(supp M) = (⋃{supp x | x. x :# M})"
apply(rule subset_antisym)
apply(rule supp_is_subset)
apply(rule Union_supports_multiset)
apply(rule Union_finite_multiset)
apply(rule Union_included_multiset)
done

lemma multisets_supp_finite:
  fixes M::"('a::fs multiset)"
  shows "finite (supp M)"
by (simp only: supp_of_multisets Union_finite_multiset)

lemma supp_of_multiset_union:
  fixes M N::"('a::fs) multiset"
  shows "supp (M + N) = supp M ∪ supp N"
  by (auto simp: supp_of_multisets)

lemma supp_empty_mset [simp]:
  shows "supp {#} = {}"
  unfolding supp_def
  by simp

instance multiset :: (fs) fs
  by standard (rule multisets_supp_finite)

subsection {* Type @{typ "'a fset"} is finitely supported *}

lemma supp_fset [simp]:
  shows "supp (fset S) = supp S"
  unfolding supp_def
  by (simp add: fset_eqvt fset_cong)

lemma supp_empty_fset [simp]:
  shows "supp {||} = {}"
  unfolding supp_def
  by simp

lemma fresh_empty_fset:
  shows "a ♯ {||}"
unfolding fresh_def
by (simp)

lemma supp_insert_fset [simp]:
  fixes x::"'a::fs"
  and   S::"'a fset"
  shows "supp (insert_fset x S) = supp x ∪ supp S"
  apply(subst supp_fset[symmetric])
  apply(simp add: supp_of_finite_insert)
  done

lemma fresh_insert_fset:
  fixes x::"'a::fs"
  and   S::"'a fset"
  shows "a ♯ insert_fset x S ⟷ a ♯ x ∧ a ♯ S"
  unfolding fresh_def
  by (simp)

lemma fset_finite_supp:
  fixes S::"('a::fs) fset"
  shows "finite (supp S)"
  by (induct S) (simp_all add: finite_supp)

lemma supp_union_fset:
  fixes S T::"'a::fs fset"
  shows "supp (S |∪| T) = supp S ∪ supp T"
by (induct S) (auto)

lemma fresh_union_fset:
  fixes S T::"'a::fs fset"
  shows "a ♯ S |∪| T ⟷ a ♯ S ∧ a ♯ T"
unfolding fresh_def
by (simp add: supp_union_fset)

instance fset :: (fs) fs
  by standard (rule fset_finite_supp)


subsection {* Type @{typ "('a, 'b) finfun"} is finitely supported *}

lemma fresh_finfun_const:
  shows "a ♯ (finfun_const b) ⟷ a ♯ b"
  by (simp add: fresh_def supp_def)

lemma fresh_finfun_update:
  shows "⟦a ♯ f; a ♯ x; a ♯ y⟧ ⟹ a ♯ finfun_update f x y"
  unfolding fresh_conv_MOST
  unfolding finfun_update_eqvt
  by (elim MOST_rev_mp) (simp)

lemma supp_finfun_const:
  shows "supp (finfun_const b) = supp(b)"
  by (simp add: supp_def)

lemma supp_finfun_update:
  shows "supp (finfun_update f x y) ⊆ supp(f, x, y)"
using fresh_finfun_update
by (auto simp: fresh_def supp_Pair)
    
instance finfun :: (fs, fs) fs
  apply standard
  apply(induct_tac x rule: finfun_weak_induct)
  apply(simp add: supp_finfun_const finite_supp)
  apply(rule finite_subset)
  apply(rule supp_finfun_update)
  apply(simp add: supp_Pair finite_supp)
  done


section {* Freshness and Fresh-Star *}

lemma fresh_Unit_elim: 
  shows "(a ♯ () ⟹ PROP C) ≡ PROP C"
  by (simp add: fresh_Unit)

lemma fresh_Pair_elim: 
  shows "(a ♯ (x, y) ⟹ PROP C) ≡ (a ♯ x ⟹ a ♯ y ⟹ PROP C)"
  by rule (simp_all add: fresh_Pair)

(* this rule needs to be added before the fresh_prodD is *)
(* added to the simplifier with mksimps                  *) 
lemma [simp]:
  shows "a ♯ x1 ⟹ a ♯ x2 ⟹ a ♯ (x1, x2)"
  by (simp add: fresh_Pair)

lemma fresh_PairD:
  shows "a ♯ (x, y) ⟹ a ♯ x"
  and   "a ♯ (x, y) ⟹ a ♯ y"
  by (simp_all add: fresh_Pair)

declaration {* fn _ =>
let
  val mksimps_pairs = (@{const_name Nominal2_Base.fresh}, @{thms fresh_PairD}) :: mksimps_pairs
in
  Simplifier.map_ss (fn ss => Simplifier.set_mksimps (mksimps mksimps_pairs) ss)
end
*}


text {* The fresh-star generalisation of fresh is used in strong
  induction principles. *}

definition 
  fresh_star :: "atom set ⇒ 'a::pt ⇒ bool" ("_ ♯* _" [80,80] 80)
where 
  "as ♯* x ≡ ∀a ∈ as. a ♯ x"

lemma fresh_star_supp_conv:
  shows "supp x ♯* y ⟹ supp y ♯* x"
by (auto simp: fresh_star_def fresh_def)

lemma fresh_star_perm_set_conv:
  fixes p::"perm"
  assumes fresh: "as ♯* p"
  and     fin: "finite as"
  shows "supp p ♯* as"
apply(rule fresh_star_supp_conv)
apply(simp add: supp_finite_atom_set fin fresh)
done

lemma fresh_star_atom_set_conv:
  assumes fresh: "as ♯* bs"
  and     fin: "finite as" "finite bs"
  shows "bs ♯* as"
using fresh
unfolding fresh_star_def fresh_def
by (auto simp: supp_finite_atom_set fin)

lemma atom_fresh_star_disjoint:
  assumes fin: "finite bs" 
  shows "as ♯* bs ⟷ (as ∩ bs = {})"

unfolding fresh_star_def fresh_def
by (auto simp: supp_finite_atom_set fin)


lemma fresh_star_Pair:
  shows "as ♯* (x, y) = (as ♯* x ∧ as ♯* y)" 
  by (auto simp: fresh_star_def fresh_Pair)

lemma fresh_star_list:
  shows "as ♯* (xs @ ys) ⟷ as ♯* xs ∧ as ♯* ys"
  and   "as ♯* (x # xs) ⟷ as ♯* x ∧ as ♯* xs"
  and   "as ♯* []"
by (auto simp: fresh_star_def fresh_Nil fresh_Cons fresh_append)

lemma fresh_star_set:
  fixes xs::"('a::fs) list"
  shows "as ♯* set xs ⟷ as ♯* xs"
unfolding fresh_star_def
by (simp add: fresh_set)

lemma fresh_star_singleton:
  fixes a::"atom"
  shows "as ♯* {a} ⟷ as ♯* a"
  by (simp add: fresh_star_def fresh_finite_insert fresh_set_empty)

lemma fresh_star_fset:
  fixes xs::"('a::fs) list"
  shows "as ♯* fset S ⟷ as ♯* S"
by (simp add: fresh_star_def fresh_def) 

lemma fresh_star_Un:
  shows "(as ∪ bs) ♯* x = (as ♯* x ∧ bs ♯* x)"
  by (auto simp: fresh_star_def)

lemma fresh_star_insert:
  shows "(insert a as) ♯* x = (a ♯ x ∧ as ♯* x)"
  by (auto simp: fresh_star_def)

lemma fresh_star_Un_elim:
  "((as ∪ bs) ♯* x ⟹ PROP C) ≡ (as ♯* x ⟹ bs ♯* x ⟹ PROP C)"
  unfolding fresh_star_def
  apply(rule)
  apply(erule meta_mp)
  apply(auto)
  done

lemma fresh_star_insert_elim:
  "(insert a as ♯* x ⟹ PROP C) ≡ (a ♯ x ⟹ as ♯* x ⟹ PROP C)"
  unfolding fresh_star_def
  by rule (simp_all add: fresh_star_def)

lemma fresh_star_empty_elim:
  "({} ♯* x ⟹ PROP C) ≡ PROP C"
  by (simp add: fresh_star_def)

lemma fresh_star_Unit_elim: 
  shows "(a ♯* () ⟹ PROP C) ≡ PROP C"
  by (simp add: fresh_star_def fresh_Unit) 

lemma fresh_star_Pair_elim: 
  shows "(a ♯* (x, y) ⟹ PROP C) ≡ (a ♯* x ⟹ a ♯* y ⟹ PROP C)"
  by (rule, simp_all add: fresh_star_Pair)

lemma fresh_star_zero:
  shows "as ♯* (0::perm)"
  unfolding fresh_star_def
  by (simp add: fresh_zero_perm)

lemma fresh_star_plus:
  fixes p q::perm
  shows "⟦a ♯* p;  a ♯* q⟧ ⟹ a ♯* (p + q)"
  unfolding fresh_star_def
  by (simp add: fresh_plus_perm)

lemma fresh_star_permute_iff:
  shows "(p ∙ a) ♯* (p ∙ x) ⟷ a ♯* x"
  unfolding fresh_star_def
  by (metis mem_permute_iff permute_minus_cancel(1) fresh_permute_iff)

lemma fresh_star_eqvt [eqvt]:
  shows "p ∙ (as ♯* x) ⟷ (p ∙ as) ♯* (p ∙ x)"
unfolding fresh_star_def by simp


section {* Induction principle for permutations *}

lemma smaller_supp:
  assumes a: "a ∈ supp p"
  shows "supp ((p ∙ a ⇌ a) + p) ⊂ supp p"
proof -
  have "supp ((p ∙ a ⇌ a) + p) ⊆ supp p"
    unfolding supp_perm by (auto simp: swap_atom)
  moreover
  have "a ∉ supp ((p ∙ a ⇌ a) + p)" by (simp add: supp_perm)
  then have "supp ((p ∙ a ⇌ a) + p) ≠ supp p" using a by auto
  ultimately 
  show "supp ((p ∙ a ⇌ a) + p) ⊂ supp p" by auto
qed
  

lemma perm_struct_induct[consumes 1, case_names zero swap]:
  assumes S: "supp p ⊆ S"
  and zero: "P 0"
  and swap: "⋀p a b. ⟦P p; supp p ⊆ S; a ∈ S; b ∈ S; a ≠ b; sort_of a = sort_of b⟧ ⟹ P ((a ⇌ b) + p)"
  shows "P p"
proof -
  have "finite (supp p)" by (simp add: finite_supp)
  then show "P p" using S
  proof(induct A"supp p" arbitrary: p rule: finite_psubset_induct)
    case (psubset p)
    then have ih: "⋀q. supp q ⊂ supp p ⟹ P q" by auto
    have as: "supp p ⊆ S" by fact
    { assume "supp p = {}"
      then have "p = 0" by (simp add: supp_perm perm_eq_iff)
      then have "P p" using zero by simp
    }
    moreover
    { assume "supp p ≠ {}"
      then obtain a where a0: "a ∈ supp p" by blast
      then have a1: "p ∙ a ∈ S" "a ∈ S" "sort_of (p ∙ a) = sort_of a" "p ∙ a ≠ a"
        using as by (auto simp: supp_atom supp_perm swap_atom)
      let ?q = "(p ∙ a ⇌ a) + p"
      have a2: "supp ?q ⊂ supp p" using a0 smaller_supp by simp
      then have "P ?q" using ih by simp
      moreover
      have "supp ?q ⊆ S" using as a2 by simp
      ultimately  have "P ((p ∙ a ⇌ a) + ?q)" using as a1 swap by simp 
      moreover 
      have "p = (p ∙ a ⇌ a) + ?q" by (simp add: perm_eq_iff)
      ultimately have "P p" by simp
    }
    ultimately show "P p" by blast
  qed
qed

lemma perm_simple_struct_induct[case_names zero swap]:
  assumes zero: "P 0"
  and     swap: "⋀p a b. ⟦P p; a ≠ b; sort_of a = sort_of b⟧ ⟹ P ((a ⇌ b) + p)"
  shows "P p"
by (rule_tac S="supp p" in perm_struct_induct)
   (auto intro: zero swap)

lemma perm_struct_induct2[consumes 1, case_names zero swap plus]:
  assumes S: "supp p ⊆ S"
  assumes zero: "P 0"
  assumes swap: "⋀a b. ⟦sort_of a = sort_of b; a ≠ b; a ∈ S; b ∈ S⟧ ⟹ P (a ⇌ b)"
  assumes plus: "⋀p1 p2. ⟦P p1; P p2; supp p1 ⊆ S; supp p2 ⊆ S⟧ ⟹ P (p1 + p2)"
  shows "P p"
using S
by (induct p rule: perm_struct_induct)
   (auto intro: zero plus swap simp add: supp_swap)

lemma perm_simple_struct_induct2[case_names zero swap plus]:
  assumes zero: "P 0"
  assumes swap: "⋀a b. ⟦sort_of a = sort_of b; a ≠ b⟧ ⟹ P (a ⇌ b)"
  assumes plus: "⋀p1 p2. ⟦P p1; P p2⟧ ⟹ P (p1 + p2)"
  shows "P p"
by (rule_tac S="supp p" in perm_struct_induct2)
   (auto intro: zero swap plus)

lemma supp_perm_singleton:
  fixes p::"perm"
  shows "supp p ⊆ {b} ⟷ p = 0"
proof -
  { assume "supp p ⊆ {b}"
    then have "p = 0"
      by (induct p rule: perm_struct_induct) (simp_all)
  }
  then show "supp p ⊆ {b} ⟷ p = 0" by (auto simp: supp_zero_perm)
qed

lemma supp_perm_pair:
  fixes p::"perm"
  shows "supp p ⊆ {a, b} ⟷ p = 0 ∨ p = (b ⇌ a)"
proof -
  { assume "supp p ⊆ {a, b}"
    then have "p = 0 ∨ p = (b ⇌ a)"
      apply (induct p rule: perm_struct_induct) 
      apply (auto simp: swap_cancel supp_zero_perm supp_swap)
      apply (simp add: swap_commute)
      done
  }
  then show "supp p ⊆ {a, b} ⟷ p = 0 ∨ p = (b ⇌ a)" 
    by (auto simp: supp_zero_perm supp_swap split: if_splits)
qed

lemma supp_perm_eq:
  assumes "(supp x) ♯* p"
  shows "p ∙ x = x"
proof -
  from assms have "supp p ⊆ {a. a ♯ x}"
    unfolding supp_perm fresh_star_def fresh_def by auto
  then show "p ∙ x = x"
  proof (induct p rule: perm_struct_induct)
    case zero
    show "0 ∙ x = x" by simp
  next
    case (swap p a b)
    then have "a ♯ x" "b ♯ x" "p ∙ x = x" by simp_all
    then show "((a ⇌ b) + p) ∙ x = x" by (simp add: swap_fresh_fresh)
  qed
qed

text {* same lemma as above, but proved with a different induction principle *}
lemma supp_perm_eq_test:
  assumes "(supp x) ♯* p"
  shows "p ∙ x = x"
proof -
  from assms have "supp p ⊆ {a. a ♯ x}"
    unfolding supp_perm fresh_star_def fresh_def by auto
  then show "p ∙ x = x"
  proof (induct p rule: perm_struct_induct2)
    case zero
    show "0 ∙ x = x" by simp
  next
    case (swap a b)
    then have "a ♯ x" "b ♯ x" by simp_all
    then show "(a ⇌ b) ∙ x = x" by (simp add: swap_fresh_fresh)
  next
    case (plus p1 p2)
    have "p1 ∙ x = x" "p2 ∙ x = x" by fact+
    then show "(p1 + p2) ∙ x = x" by simp
  qed
qed

lemma perm_supp_eq:
  assumes a: "(supp p) ♯* x"
  shows "p ∙ x = x"
proof -
  from assms have "supp p ⊆ {a. a ♯ x}"
    unfolding supp_perm fresh_star_def fresh_def by auto
  then show "p ∙ x = x"
  proof (induct p rule: perm_struct_induct2)
    case zero
    show "0 ∙ x = x" by simp
  next
    case (swap a b)
    then have "a ♯ x" "b ♯ x" by simp_all
    then show "(a ⇌ b) ∙ x = x" by (simp add: swap_fresh_fresh)
  next
    case (plus p1 p2)
    have "p1 ∙ x = x" "p2 ∙ x = x" by fact+
    then show "(p1 + p2) ∙ x = x" by simp
  qed
qed

lemma supp_perm_perm_eq:
  assumes a: "∀a ∈ supp x. p ∙ a = q ∙ a"
  shows "p ∙ x = q ∙ x"
proof -
  from a have "∀a ∈ supp x. (-q + p) ∙ a = a" by simp
  then have "∀a ∈ supp x. a ∉ supp (-q + p)" 
    unfolding supp_perm by simp
  then have "supp x ♯* (-q + p)"
    unfolding fresh_star_def fresh_def by simp
  then have "(-q + p) ∙ x = x" by (simp only: supp_perm_eq)
  then show "p ∙ x = q ∙ x"
    by (metis permute_minus_cancel permute_plus)
qed

text {* disagreement set *}

definition
  dset :: "perm ⇒ perm ⇒ atom set"
where
  "dset p q = {a::atom. p ∙ a ≠ q ∙ a}"

lemma ds_fresh:
  assumes "dset p q ♯* x"
  shows "p ∙ x = q ∙ x"
using assms
unfolding dset_def fresh_star_def fresh_def
by (auto intro: supp_perm_perm_eq)

lemma atom_set_perm_eq:
  assumes a: "as ♯* p"
  shows "p ∙ as = as"
proof -
  from a have "supp p ⊆ {a. a ∉ as}"
    unfolding supp_perm fresh_star_def fresh_def by auto
  then show "p ∙ as = as"
  proof (induct p rule: perm_struct_induct)
    case zero
    show "0 ∙ as = as" by simp
  next
    case (swap p a b)
    then have "a ∉ as" "b ∉ as" "p ∙ as = as" by simp_all
    then show "((a ⇌ b) + p) ∙ as = as" by (simp add: swap_set_not_in)
  qed
qed

section {* Avoiding of atom sets *}

text {* 
  For every set of atoms, there is another set of atoms
  avoiding a finitely supported c and there is a permutation
  which 'translates' between both sets.
*}

lemma at_set_avoiding_aux:
  fixes Xs::"atom set"
  and   As::"atom set"
  assumes b: "Xs ⊆ As"
  and     c: "finite As"
  shows "∃p. (p ∙ Xs) ∩ As = {} ∧ (supp p) = (Xs ∪ (p ∙ Xs))"
proof -
  from b c have "finite Xs" by (rule finite_subset)
  then show ?thesis using b
  proof (induct rule: finite_subset_induct)
    case empty
    have "0 ∙ {} ∩ As = {}" by simp
    moreover
    have "supp (0::perm) = {} ∪ 0 ∙ {}" by (simp add: supp_zero_perm)
    ultimately show ?case by blast
  next
    case (insert x Xs)
    then obtain p where
      p1: "(p ∙ Xs) ∩ As = {}" and 
      p2: "supp p = (Xs ∪ (p ∙ Xs))" by blast
    from `x ∈ As` p1 have "x ∉ p ∙ Xs" by fast
    with `x ∉ Xs` p2 have "x ∉ supp p" by fast
    hence px: "p ∙ x = x" unfolding supp_perm by simp
    have "finite (As ∪ p ∙ Xs ∪ supp p)"
      using `finite As` `finite Xs`
      by (simp add: permute_set_eq_image finite_supp)
    then obtain y where "y ∉ (As ∪ p ∙ Xs ∪ supp p)" "sort_of y = sort_of x"
      by (rule obtain_atom)
    hence y: "y ∉ As" "y ∉ p ∙ Xs" "y ∉ supp p" "sort_of y = sort_of x"
      by simp_all
    hence py: "p ∙ y = y" "x ≠ y" using `x ∈ As`
      by (auto simp: supp_perm)
    let ?q = "(x ⇌ y) + p"
    have q: "?q ∙ insert x Xs = insert y (p ∙ Xs)"
      unfolding insert_eqvt
      using `p ∙ x = x` `sort_of y = sort_of x`
      using `x ∉ p ∙ Xs` `y ∉ p ∙ Xs`
      by (simp add: swap_atom swap_set_not_in)
    have "?q ∙ insert x Xs ∩ As = {}"
      using `y ∉ As` `p ∙ Xs ∩ As = {}`
      unfolding q by simp
    moreover
    have "supp (x ⇌ y) ∩ supp p = {}" using px py `sort_of y = sort_of x`
      unfolding supp_swap by (simp add: supp_perm)
    then have "supp ?q = (supp (x ⇌ y) ∪ supp p)" 
      by (simp add: supp_plus_perm_eq)
    then have "supp ?q = insert x Xs ∪ ?q ∙ insert x Xs"
      using p2 `sort_of y = sort_of x` `x ≠ y` unfolding q supp_swap
      by auto
    ultimately show ?case by blast
  qed
qed

lemma at_set_avoiding:
  assumes a: "finite Xs"
  and     b: "finite (supp c)"
  obtains p::"perm" where "(p ∙ Xs)♯*c" and "(supp p) = (Xs ∪ (p ∙ Xs))"
  using a b at_set_avoiding_aux [where Xs="Xs" and As="Xs ∪ supp c"]
  unfolding fresh_star_def fresh_def by blast

lemma at_set_avoiding1:
  assumes "finite xs"
  and     "finite (supp c)"
  shows "∃p. (p ∙ xs) ♯* c"
using assms
apply(erule_tac c="c" in at_set_avoiding)
apply(auto)
done

lemma at_set_avoiding2:
  assumes "finite xs"
  and     "finite (supp c)" "finite (supp x)"
  and     "xs ♯* x"
  shows "∃p. (p ∙ xs) ♯* c ∧ supp x ♯* p"
using assms
apply(erule_tac c="(c, x)" in at_set_avoiding)
apply(simp add: supp_Pair)
apply(rule_tac x="p" in exI)
apply(simp add: fresh_star_Pair)
apply(rule fresh_star_supp_conv)
apply(auto simp: fresh_star_def)
done

lemma at_set_avoiding3:
  assumes "finite xs"
  and     "finite (supp c)" "finite (supp x)"
  and     "xs ♯* x"
  shows "∃p. (p ∙ xs) ♯* c ∧ supp x ♯* p ∧ supp p = xs ∪ (p ∙ xs)"
using assms
apply(erule_tac c="(c, x)" in at_set_avoiding)
apply(simp add: supp_Pair)
apply(rule_tac x="p" in exI)
apply(simp add: fresh_star_Pair)
apply(rule fresh_star_supp_conv)
apply(auto simp: fresh_star_def)
done

lemma at_set_avoiding2_atom:
  assumes "finite (supp c)" "finite (supp x)"
  and     b: "a ♯ x"
  shows "∃p. (p ∙ a) ♯ c ∧ supp x ♯* p"
proof -
  have a: "{a} ♯* x" unfolding fresh_star_def by (simp add: b)
  obtain p where p1: "(p ∙ {a}) ♯* c" and p2: "supp x ♯* p"
    using at_set_avoiding2[of "{a}" "c" "x"] assms a by blast
  have c: "(p ∙ a) ♯ c" using p1
    unfolding fresh_star_def Ball_def 
    by(erule_tac x="p ∙ a" in allE) (simp add: permute_set_def)
  hence "p ∙ a ♯ c ∧ supp x ♯* p" using p2 by blast
  then show "∃p. (p ∙ a) ♯ c ∧ supp x ♯* p" by blast
qed


section {* Renaming permutations *}

lemma set_renaming_perm:
  assumes b: "finite bs"
  shows "∃q. (∀b ∈ bs. q ∙ b = p ∙ b) ∧ supp q ⊆ bs ∪ (p ∙ bs)"
using b
proof (induct)
  case empty
  have "(∀b ∈ {}. 0 ∙ b = p ∙ b) ∧ supp (0::perm) ⊆ {} ∪ p ∙ {}"
    by (simp add: permute_set_def supp_perm)
  then show "∃q. (∀b ∈ {}. q ∙ b = p ∙ b) ∧ supp q ⊆ {} ∪ p ∙ {}" by blast
next
  case (insert a bs)
  then have " ∃q. (∀b ∈ bs. q ∙ b = p ∙ b) ∧ supp q ⊆ bs ∪ p ∙ bs" by simp 
  then obtain q where *: "∀b ∈ bs. q ∙ b = p ∙ b" and **: "supp q ⊆ bs ∪ p ∙ bs"
    by (metis empty_subsetI insert(3) supp_swap) 
  { assume 1: "q ∙ a = p ∙ a"
    have "∀b ∈ (insert a bs). q ∙ b = p ∙ b" using 1 * by simp
    moreover 
    have "supp q ⊆ insert a bs ∪ p ∙ insert a bs" 
      using ** by (auto simp: insert_eqvt)
    ultimately 
    have "∃q. (∀b ∈ insert a bs. q ∙ b = p ∙ b) ∧ supp q ⊆ insert a bs ∪ p ∙ insert a bs" by blast
  }
  moreover
  { assume 2: "q ∙ a ≠ p ∙ a"
    def q'  "((q ∙ a) ⇌ (p ∙ a)) + q"
    have "∀b ∈ insert a bs. q' ∙ b = p ∙ b" using 2 * `a ∉ bs` unfolding q'_def
      by (auto simp: swap_atom)
    moreover 
    { have "{q ∙ a, p ∙ a} ⊆ insert a bs ∪ p ∙ insert a bs"
        using ** 
        apply (auto simp: supp_perm insert_eqvt)
        apply (subgoal_tac "q ∙ a ∈ bs ∪ p ∙ bs")
        apply(auto)[1]
        apply(subgoal_tac "q ∙ a ∈ {a. q ∙ a ≠ a}")
        apply(blast)
        apply(simp)
        done
      then have "supp (q ∙ a ⇌ p ∙ a) ⊆ insert a bs ∪ p ∙ insert a bs" 
        unfolding supp_swap by auto
      moreover
      have "supp q ⊆ insert a bs ∪ p ∙ insert a bs" 
        using ** by (auto simp: insert_eqvt)
      ultimately 
      have "supp q' ⊆ insert a bs ∪ p ∙ insert a bs" 
        unfolding q'_def using supp_plus_perm by blast
    }
    ultimately 
    have "∃q. (∀b ∈ insert a bs. q ∙ b = p ∙ b) ∧ supp q ⊆ insert a bs ∪ p ∙ insert a bs" by blast
  }
  ultimately show "∃q. (∀b ∈ insert a bs. q ∙ b = p ∙ b) ∧ supp q ⊆ insert a bs ∪ p ∙ insert a bs"
    by blast
qed

lemma set_renaming_perm2:
  shows "∃q. (∀b ∈ bs. q ∙ b = p ∙ b) ∧ supp q ⊆ bs ∪ (p ∙ bs)"
proof -
  have "finite (bs ∩ supp p)" by (simp add: finite_supp)
  then obtain q 
    where *: "∀b ∈ bs ∩ supp p. q ∙ b = p ∙ b" and **: "supp q ⊆ (bs ∩ supp p) ∪ (p ∙ (bs ∩ supp p))"
    using set_renaming_perm by blast
  from ** have "supp q ⊆ bs ∪ (p ∙ bs)" by (auto simp: inter_eqvt)
  moreover
  have "∀b ∈ bs - supp p. q ∙ b = p ∙ b" 
    apply(auto)
    apply(subgoal_tac "b ∉ supp q")
    apply(simp add: fresh_def[symmetric])
    apply(simp add: fresh_perm)
    apply(clarify)
    apply(rotate_tac 2)
    apply(drule subsetD[OF **])
    apply(simp add: inter_eqvt supp_eqvt permute_self)
    done
  ultimately have "(∀b ∈ bs. q ∙ b = p ∙ b) ∧ supp q ⊆ bs ∪ (p ∙ bs)" using * by auto
  then show "∃q. (∀b ∈ bs. q ∙ b = p ∙ b) ∧ supp q ⊆ bs ∪ (p ∙ bs)" by blast
qed
    
lemma list_renaming_perm:
  shows "∃q. (∀b ∈ set bs. q ∙ b = p ∙ b) ∧ supp q ⊆ set bs ∪ (p ∙ set bs)"
proof (induct bs)
  case (Cons a bs)
  then have " ∃q. (∀b ∈ set bs. q ∙ b = p ∙ b) ∧ supp q ⊆ set bs ∪ p ∙ (set bs)"  by simp
  then obtain q where *: "∀b ∈ set bs. q ∙ b = p ∙ b" and **: "supp q ⊆ set bs ∪ p ∙ (set bs)"
    by (blast)
  { assume 1: "a ∈ set bs"
    have "q ∙ a = p ∙ a" using * 1 by (induct bs) (auto)
    then have "∀b ∈ set (a # bs). q ∙ b = p ∙ b" using * by simp 
    moreover 
    have "supp q ⊆ set (a # bs) ∪ p ∙ (set (a # bs))" using ** by (auto simp: insert_eqvt)
    ultimately 
    have "∃q. (∀b ∈ set (a # bs). q ∙ b = p ∙ b) ∧ supp q ⊆ set (a # bs) ∪ p ∙ (set (a # bs))" by blast
  }
  moreover
  { assume 2: "a ∉ set bs"
    def q'  "((q ∙ a) ⇌ (p ∙ a)) + q"
    have "∀b ∈ set (a # bs). q' ∙ b = p ∙ b" 
      unfolding q'_def using 2 * `a ∉ set bs` by (auto simp: swap_atom)
    moreover 
    { have "{q ∙ a, p ∙ a} ⊆ set (a # bs) ∪ p ∙ (set (a # bs))"
        using **
        apply (auto simp: supp_perm insert_eqvt)
        apply (subgoal_tac "q ∙ a ∈ set bs ∪ p ∙ set bs")
        apply(auto)[1]
        apply(subgoal_tac "q ∙ a ∈ {a. q ∙ a ≠ a}")
        apply(blast)
        apply(simp)
        done
      then have "supp (q ∙ a ⇌ p ∙ a) ⊆ set (a # bs) ∪ p ∙ set (a # bs)" 
        unfolding supp_swap by auto
      moreover
      have "supp q ⊆ set (a # bs) ∪ p ∙ (set (a # bs))" 
        using ** by (auto simp: insert_eqvt)
      ultimately 
      have "supp q' ⊆ set (a # bs) ∪ p ∙ (set (a # bs))" 
        unfolding q'_def using supp_plus_perm by blast
    }
    ultimately 
    have "∃q. (∀b ∈ set (a # bs).  q ∙ b = p ∙ b) ∧ supp q ⊆ set (a # bs) ∪ p ∙ (set (a # bs))" by blast
  }
  ultimately show "∃q. (∀b ∈ set (a # bs). q ∙ b = p ∙ b) ∧ supp q ⊆ set (a # bs) ∪ p ∙ (set (a # bs))"
    by blast
next
 case Nil
  have "(∀b ∈ set []. 0 ∙ b = p ∙ b) ∧ supp (0::perm) ⊆ set [] ∪ p ∙ set []" 
    by (simp add: supp_zero_perm)
  then show "∃q. (∀b ∈ set []. q ∙ b = p ∙ b) ∧ supp q ⊆ set [] ∪ p ∙ (set [])" by blast
qed


section {* Concrete Atoms Types *}

text {*
  Class @{text at_base} allows types containing multiple sorts of atoms.
  Class @{text at} only allows types with a single sort.
*}

class at_base = pt +
  fixes atom :: "'a ⇒ atom"
  assumes atom_eq_iff [simp]: "atom a = atom b ⟷ a = b"
  assumes atom_eqvt: "p ∙ (atom a) = atom (p ∙ a)"

declare atom_eqvt [eqvt]

class at = at_base +
  assumes sort_of_atom_eq [simp]: "sort_of (atom a) = sort_of (atom b)"

lemma sort_ineq [simp]:
  assumes "sort_of (atom a) ≠ sort_of (atom b)"
  shows "atom a ≠ atom b"
using assms by metis

lemma supp_at_base: 
  fixes a::"'a::at_base"
  shows "supp a = {atom a}"
  by (simp add: supp_atom [symmetric] supp_def atom_eqvt)

lemma fresh_at_base: 
  shows  "sort_of a ≠ sort_of (atom b) ⟹ a ♯ b"
  and "a ♯ b ⟷ a ≠ atom b"
  unfolding fresh_def 
  apply(simp_all add: supp_at_base)
  apply(metis)
  done

(* solves the freshness only if the inequality can be shown by the
   simproc below *)  
lemma fresh_ineq_at_base [simp]:
  shows "a ≠ atom b ⟹ a ♯ b"
  by (simp add: fresh_at_base)


lemma fresh_atom_at_base [simp]: 
  fixes b::"'a::at_base"
  shows "a ♯ atom b ⟷ a ♯ b"
  by (simp add: fresh_def supp_at_base supp_atom)

lemma fresh_star_atom_at_base: 
  fixes b::"'a::at_base"
  shows "as ♯* atom b ⟷ as ♯* b"
  by (simp add: fresh_star_def fresh_atom_at_base)

lemma if_fresh_at_base [simp]:
  shows "atom a ♯ x ⟹ P (if a = x then t else s) = P s"
  and   "atom a ♯ x ⟹ P (if x = a then t else s) = P s"
by (simp_all add: fresh_at_base)


simproc_setup fresh_ineq ("x ≠ (y::'a::at_base)") = {* fn _ => fn ctxt => fn ctrm =>
  case Thm.term_of ctrm of @{term "HOL.Not"} $ (Const (@{const_name HOL.eq}, _) $ lhs $ rhs) =>
    let  
      fun first_is_neg lhs rhs [] = NONE
        | first_is_neg lhs rhs (thm::thms) =
          (case Thm.prop_of thm of
             _ $ (@{term "HOL.Not"} $ (Const (@{const_name HOL.eq}, _) $ l $ r)) =>
               (if l = lhs andalso r = rhs then SOME(thm)
                else if r = lhs andalso l = rhs then SOME(thm RS @{thm not_sym})
                else first_is_neg lhs rhs thms)  
        | _ => first_is_neg lhs rhs thms)

      val simp_thms = @{thms fresh_Pair fresh_at_base atom_eq_iff}
      val prems = Simplifier.prems_of ctxt
         |> filter (fn thm => case Thm.prop_of thm of                    
            _ $ (Const (@{const_name fresh}, ty) $ (_ $ a) $ b) => 
            (let 
               val atms = a :: HOLogic.strip_tuple b
             in
               member (op=) atms lhs andalso member (op=) atms rhs
             end) 
            | _ => false)
         |> map (simplify (put_simpset HOL_basic_ss ctxt addsimps simp_thms))
         |> map (HOLogic.conj_elims ctxt)
         |> flat
    in 
      case first_is_neg lhs rhs prems of
        SOME(thm) => SOME(thm RS @{thm Eq_TrueI})
      | NONE => NONE
    end
  | _ => NONE
*}


instance at_base < fs
proof qed (simp add: supp_at_base)

lemma at_base_infinite [simp]:
  shows "infinite (UNIV :: 'a::at_base set)" (is "infinite ?U")
proof
  obtain a :: 'a where "True" by auto
  assume "finite ?U"
  hence "finite (atom ` ?U)"
    by (rule finite_imageI)
  then obtain b where b: "b ∉ atom ` ?U" "sort_of b = sort_of (atom a)"
    by (rule obtain_atom)
  from b(2) have "b = atom ((atom a ⇌ b) ∙ a)"
    unfolding atom_eqvt [symmetric]
    by (simp add: swap_atom)
  hence "b ∈ atom ` ?U" by simp
  with b(1) show "False" by simp
qed

lemma swap_at_base_simps [simp]:
  fixes x y::"'a::at_base"
  shows "sort_of (atom x) = sort_of (atom y) ⟹ (atom x ⇌ atom y) ∙ x = y"
  and   "sort_of (atom x) = sort_of (atom y) ⟹ (atom x ⇌ atom y) ∙ y = x"
  and   "atom x ≠ a ⟹ atom x ≠ b ⟹ (a ⇌ b) ∙ x = x"
  unfolding atom_eq_iff [symmetric]
  unfolding atom_eqvt [symmetric]
  by simp_all

lemma obtain_at_base:
  assumes X: "finite X"
  obtains a::"'a::at_base" where "atom a ∉ X"
proof -
  have "inj (atom :: 'a ⇒ atom)"
    by (simp add: inj_on_def)
  with X have "finite (atom -` X :: 'a set)"
    by (rule finite_vimageI)
  with at_base_infinite have "atom -` X ≠ (UNIV :: 'a set)"
    by auto
  then obtain a :: 'a where "atom a ∉ X"
    by auto
  thus ?thesis ..
qed

lemma obtain_fresh':
  assumes fin: "finite (supp x)"
  obtains a::"'a::at_base" where "atom a ♯ x"
using obtain_at_base[where X="supp x"]
by (auto simp: fresh_def fin)

lemma obtain_fresh:
  fixes x::"'b::fs"
  obtains a::"'a::at_base" where "atom a ♯ x"
  by (rule obtain_fresh') (auto simp: finite_supp)

lemma supp_finite_set_at_base:
  assumes a: "finite S"
  shows "supp S = atom ` S"
apply(simp add: supp_of_finite_sets[OF a])
apply(simp add: supp_at_base)
apply(auto)
done

(* FIXME 
lemma supp_cofinite_set_at_base:
  assumes a: "finite (UNIV - S)"
  shows "supp S = atom ` (UNIV - S)"
apply(rule finite_supp_unique)
*)

lemma fresh_finite_set_at_base:
  fixes a::"'a::at_base"
  assumes a: "finite S"
  shows "atom a ♯ S ⟷ a ∉ S"
  unfolding fresh_def
  apply(simp add: supp_finite_set_at_base[OF a])
  apply(subst inj_image_mem_iff)
  apply(simp add: inj_on_def)
  apply(simp)
  done

lemma fresh_at_base_permute_iff [simp]:
  fixes a::"'a::at_base"
  shows "atom (p ∙ a) ♯ p ∙ x ⟷ atom a ♯ x"
  unfolding atom_eqvt[symmetric]
  by (simp only: fresh_permute_iff)

lemma fresh_at_base_permI: 
  shows "atom a ♯ p ⟹ p ∙ a = a"
by (simp add: fresh_def supp_perm)


section {* Infrastructure for concrete atom types *}

definition
  flip :: "'a::at_base ⇒ 'a ⇒ perm" ("'(_ ↔ _')")
where
  "(a ↔ b) = (atom a ⇌ atom b)"

lemma flip_fresh_fresh:
  assumes "atom a ♯ x" "atom b ♯ x"
  shows "(a ↔ b) ∙ x = x"
using assms
by (simp add: flip_def swap_fresh_fresh)

lemma flip_self [simp]: "(a ↔ a) = 0"
  unfolding flip_def by (rule swap_self)

lemma flip_commute: "(a ↔ b) = (b ↔ a)"
  unfolding flip_def by (rule swap_commute)

lemma minus_flip [simp]: "- (a ↔ b) = (a ↔ b)"
  unfolding flip_def by (rule minus_swap)

lemma add_flip_cancel: "(a ↔ b) + (a ↔ b) = 0"
  unfolding flip_def by (rule swap_cancel)

lemma permute_flip_cancel [simp]: "(a ↔ b) ∙ (a ↔ b) ∙ x = x"
  unfolding permute_plus [symmetric] add_flip_cancel by simp

lemma permute_flip_cancel2 [simp]: "(a ↔ b) ∙ (b ↔ a) ∙ x = x"
  by (simp add: flip_commute)

lemma flip_eqvt [eqvt]: 
  shows "p ∙ (a ↔ b) = (p ∙ a ↔ p ∙ b)"
  unfolding flip_def
  by (simp add: swap_eqvt atom_eqvt)

lemma flip_at_base_simps [simp]:
  shows "sort_of (atom a) = sort_of (atom b) ⟹ (a ↔ b) ∙ a = b"
  and   "sort_of (atom a) = sort_of (atom b) ⟹ (a ↔ b) ∙ b = a"
  and   "⟦a ≠ c; b ≠ c⟧ ⟹ (a ↔ b) ∙ c = c"
  and   "sort_of (atom a) ≠ sort_of (atom b) ⟹ (a ↔ b) ∙ x = x"
  unfolding flip_def
  unfolding atom_eq_iff [symmetric]
  unfolding atom_eqvt [symmetric]
  by simp_all

text {* the following two lemmas do not hold for at_base, 
  only for single sort atoms from at *}

lemma flip_triple:
  fixes a b c::"'a::at"
  assumes "a ≠ b" and "c ≠ b"
  shows "(a ↔ c) + (b ↔ c) + (a ↔ c) = (a ↔ b)"
  unfolding flip_def
  by (rule swap_triple) (simp_all add: assms)

lemma permute_flip_at:
  fixes a b c::"'a::at"
  shows "(a ↔ b) ∙ c = (if c = a then b else if c = b then a else c)"
  unfolding flip_def
  apply (rule atom_eq_iff [THEN iffD1])
  apply (subst atom_eqvt [symmetric])
  apply (simp add: swap_atom)
  done

lemma flip_at_simps [simp]:
  fixes a b::"'a::at"
  shows "(a ↔ b) ∙ a = b" 
  and   "(a ↔ b) ∙ b = a"
  unfolding permute_flip_at by simp_all


subsection {* Syntax for coercing at-elements to the atom-type *}

syntax
  "_atom_constrain" :: "logic ⇒ type ⇒ logic" ("_:::_" [4, 0] 3)

translations
  "_atom_constrain a t" => "CONST atom (_constrain a t)"


subsection {* A lemma for proving instances of class @{text at}. *}

setup {* Sign.add_const_constraint (@{const_name "permute"}, NONE) *}
setup {* Sign.add_const_constraint (@{const_name "atom"}, NONE) *}

text {*
  New atom types are defined as subtypes of @{typ atom}.
*}

lemma exists_eq_simple_sort: 
  shows "∃a. a ∈ {a. sort_of a = s}"
  by (rule_tac x="Atom s 0" in exI, simp)

lemma exists_eq_sort: 
  shows "∃a. a ∈ {a. sort_of a ∈ range sort_fun}"
  by (rule_tac x="Atom (sort_fun x) y" in exI, simp)

lemma at_base_class:
  fixes sort_fun :: "'b ⇒ atom_sort"
  fixes Rep :: "'a ⇒ atom" and Abs :: "atom ⇒ 'a"
  assumes type: "type_definition Rep Abs {a. sort_of a ∈ range sort_fun}"
  assumes atom_def: "⋀a. atom a = Rep a"
  assumes permute_def: "⋀p a. p ∙ a = Abs (p ∙ Rep a)"
  shows "OFCLASS('a, at_base_class)"
proof
  interpret type_definition Rep Abs "{a. sort_of a ∈ range sort_fun}" by (rule type)
  have sort_of_Rep: "⋀a. sort_of (Rep a) ∈ range sort_fun" using Rep by simp
  fix a b :: 'a and p p1 p2 :: perm
  show "0 ∙ a = a"
    unfolding permute_def by (simp add: Rep_inverse)
  show "(p1 + p2) ∙ a = p1 ∙ p2 ∙ a"
    unfolding permute_def by (simp add: Abs_inverse sort_of_Rep)
  show "atom a = atom b ⟷ a = b"
    unfolding atom_def by (simp add: Rep_inject)
  show "p ∙ atom a = atom (p ∙ a)"
    unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep)
qed

(*
lemma at_class:
  fixes s :: atom_sort
  fixes Rep :: "'a ⇒ atom" and Abs :: "atom ⇒ 'a"
  assumes type: "type_definition Rep Abs {a. sort_of a ∈ range (λx::unit. s)}"
  assumes atom_def: "⋀a. atom a = Rep a"
  assumes permute_def: "⋀p a. p ∙ a = Abs (p ∙ Rep a)"
  shows "OFCLASS('a, at_class)"
proof
  interpret type_definition Rep Abs "{a. sort_of a ∈ range (λx::unit. s)}" by (rule type)
  have sort_of_Rep: "⋀a. sort_of (Rep a) = s" using Rep by (simp add: image_def)
  fix a b :: 'a and p p1 p2 :: perm
  show "0 ∙ a = a"
    unfolding permute_def by (simp add: Rep_inverse)
  show "(p1 + p2) ∙ a = p1 ∙ p2 ∙ a"
    unfolding permute_def by (simp add: Abs_inverse sort_of_Rep)
  show "sort_of (atom a) = sort_of (atom b)"
    unfolding atom_def by (simp add: sort_of_Rep)
  show "atom a = atom b ⟷ a = b"
    unfolding atom_def by (simp add: Rep_inject)
  show "p ∙ atom a = atom (p ∙ a)"
    unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep)
qed
*)

lemma at_class:
  fixes s :: atom_sort
  fixes Rep :: "'a ⇒ atom" and Abs :: "atom ⇒ 'a"
  assumes type: "type_definition Rep Abs {a. sort_of a = s}"
  assumes atom_def: "⋀a. atom a = Rep a"
  assumes permute_def: "⋀p a. p ∙ a = Abs (p ∙ Rep a)"
  shows "OFCLASS('a, at_class)"
proof
  interpret type_definition Rep Abs "{a. sort_of a = s}" by (rule type)
  have sort_of_Rep: "⋀a. sort_of (Rep a) = s" using Rep by (simp add: image_def)
  fix a b :: 'a and p p1 p2 :: perm
  show "0 ∙ a = a"
    unfolding permute_def by (simp add: Rep_inverse)
  show "(p1 + p2) ∙ a = p1 ∙ p2 ∙ a"
    unfolding permute_def by (simp add: Abs_inverse sort_of_Rep)
  show "sort_of (atom a) = sort_of (atom b)"
    unfolding atom_def by (simp add: sort_of_Rep)
  show "atom a = atom b ⟷ a = b"
    unfolding atom_def by (simp add: Rep_inject)
  show "p ∙ atom a = atom (p ∙ a)"
    unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep)
qed

lemma at_class_sort:
  fixes s :: atom_sort
  fixes Rep :: "'a ⇒ atom" and Abs :: "atom ⇒ 'a"
  fixes a::"'a"
  assumes type: "type_definition Rep Abs {a. sort_of a = s}"
  assumes atom_def: "⋀a. atom a = Rep a"
  shows "sort_of (atom a) = s"
  using atom_def type
  unfolding type_definition_def by simp


setup {* Sign.add_const_constraint
  (@{const_name "permute"}, SOME @{typ "perm ⇒ 'a::pt ⇒ 'a"}) *}
setup {* Sign.add_const_constraint
  (@{const_name "atom"}, SOME @{typ "'a::at_base ⇒ atom"}) *}


section {* Library functions for the nominal infrastructure *}

ML_file "nominal_library.ML"


section {* The freshness lemma according to Andy Pitts *}

lemma freshness_lemma:
  fixes h :: "'a::at ⇒ 'b::pt"
  assumes a: "∃a. atom a ♯ (h, h a)"
  shows  "∃x. ∀a. atom a ♯ h ⟶ h a = x"
proof -
  from a obtain b where a1: "atom b ♯ h" and a2: "atom b ♯ h b"
    by (auto simp: fresh_Pair)
  show "∃x. ∀a. atom a ♯ h ⟶ h a = x"
  proof (intro exI allI impI)
    fix a :: 'a
    assume a3: "atom a ♯ h"
    show "h a = h b"
    proof (cases "a = b")
      assume "a = b"
      thus "h a = h b" by simp
    next
      assume "a ≠ b"
      hence "atom a ♯ b" by (simp add: fresh_at_base)
      with a3 have "atom a ♯ h b" 
        by (rule fresh_fun_app)
      with a2 have d1: "(atom b ⇌ atom a) ∙ (h b) = (h b)"
        by (rule swap_fresh_fresh)
      from a1 a3 have d2: "(atom b ⇌ atom a) ∙ h = h"
        by (rule swap_fresh_fresh)
      from d1 have "h b = (atom b ⇌ atom a) ∙ (h b)" by simp
      also have "… = ((atom b ⇌ atom a) ∙ h) ((atom b ⇌ atom a) ∙ b)"
        by (rule permute_fun_app_eq)
      also have "… = h a"
        using d2 by simp
      finally show "h a = h b"  by simp
    qed
  qed
qed

lemma freshness_lemma_unique:
  fixes h :: "'a::at ⇒ 'b::pt"
  assumes a: "∃a. atom a ♯ (h, h a)"
  shows "∃!x. ∀a. atom a ♯ h ⟶ h a = x"
proof (rule ex_ex1I)
  from a show "∃x. ∀a. atom a ♯ h ⟶ h a = x"
    by (rule freshness_lemma)
next
  fix x y
  assume x: "∀a. atom a ♯ h ⟶ h a = x"
  assume y: "∀a. atom a ♯ h ⟶ h a = y"
  from a x y show "x = y" 
    by (auto simp: fresh_Pair)
qed

text {* packaging the freshness lemma into a function *}

definition
  Fresh :: "('a::at ⇒ 'b::pt) ⇒ 'b"
where
  "Fresh h = (THE x. ∀a. atom a ♯ h ⟶ h a = x)"

lemma Fresh_apply:
  fixes h :: "'a::at ⇒ 'b::pt"
  assumes a: "∃a. atom a ♯ (h, h a)"
  assumes b: "atom a ♯ h"
  shows "Fresh h = h a"
unfolding Fresh_def
proof (rule the_equality)
  show "∀a'. atom a' ♯ h ⟶ h a' = h a"
  proof (intro strip)
    fix a':: 'a
    assume c: "atom a' ♯ h"
    from a have "∃x. ∀a. atom a ♯ h ⟶ h a = x" by (rule freshness_lemma)
    with b c show "h a' = h a" by auto
  qed
next
  fix fr :: 'b
  assume "∀a. atom a ♯ h ⟶ h a = fr"
  with b show "fr = h a" by auto
qed

lemma Fresh_apply':
  fixes h :: "'a::at ⇒ 'b::pt"
  assumes a: "atom a ♯ h" "atom a ♯ h a"
  shows "Fresh h = h a"
  apply (rule Fresh_apply)
  apply (auto simp: fresh_Pair intro: a)
  done

simproc_setup Fresh_simproc ("Fresh (h::'a::at ⇒ 'b::pt)") = {* fn _ => fn ctxt => fn ctrm =>
  let
     val _ $ h = Thm.term_of ctrm

     val cfresh = @{const_name fresh}
     val catom  = @{const_name atom}

     val atoms = Simplifier.prems_of ctxt
      |> map_filter (fn thm => case Thm.prop_of thm of                    
           _ $ (Const (cfresh, _) $ (Const (catom, _) $ atm) $ _) => SOME (atm) | _ => NONE)
      |> distinct (op=)
     
     fun get_thm atm = 
       let
         val goal1 = HOLogic.mk_Trueprop (mk_fresh (mk_atom atm) h)
         val goal2 = HOLogic.mk_Trueprop (mk_fresh (mk_atom atm) (h $ atm))
 
         val thm1 = Goal.prove ctxt [] [] goal1 (K (asm_simp_tac ctxt 1)) 
         val thm2 = Goal.prove ctxt [] [] goal2 (K (asm_simp_tac ctxt 1)) 
       in
         SOME (@{thm Fresh_apply'} OF [thm1, thm2] RS eq_reflection)
       end handle ERROR _ => NONE
  in
    get_first get_thm atoms
  end
*}


lemma Fresh_eqvt:
  fixes h :: "'a::at ⇒ 'b::pt"
  assumes a: "∃a. atom a ♯ (h, h a)"
  shows "p ∙ (Fresh h) = Fresh (p ∙ h)"
proof -
  from a obtain a::"'a::at" where fr: "atom a ♯ h" "atom a ♯ h a"
    by (metis fresh_Pair)
  then have fr_p: "atom (p ∙ a) ♯ (p ∙ h)" "atom (p ∙ a) ♯ (p ∙ h) (p ∙ a)"
    by (metis atom_eqvt fresh_permute_iff eqvt_apply)+
  have "p ∙ (Fresh h) = p ∙ (h a)" using fr by simp
  also have "... = (p ∙ h) (p ∙ a)" by simp
  also have "... = Fresh (p ∙ h)" using fr_p by simp
  finally show "p ∙ (Fresh h) = Fresh (p ∙ h)" .
qed

lemma Fresh_supports:
  fixes h :: "'a::at ⇒ 'b::pt"
  assumes a: "∃a. atom a ♯ (h, h a)"
  shows "(supp h) supports (Fresh h)"
  apply (simp add: supports_def fresh_def [symmetric])
  apply (simp add: Fresh_eqvt [OF a] swap_fresh_fresh)
  done

notation Fresh (binder "FRESH " 10)

lemma FRESH_f_iff:
  fixes P :: "'a::at ⇒ 'b::pure"
  fixes f :: "'b ⇒ 'c::pure"
  assumes P: "finite (supp P)"
  shows "(FRESH x. f (P x)) = f (FRESH x. P x)"
proof -
  obtain a::'a where "atom a ♯ P" using P by (rule obtain_fresh')
  then show "(FRESH x. f (P x)) = f (FRESH x. P x)"
    by (simp add: pure_fresh)
qed

lemma FRESH_binop_iff:
  fixes P :: "'a::at ⇒ 'b::pure"
  fixes Q :: "'a::at ⇒ 'c::pure"
  fixes binop :: "'b ⇒ 'c ⇒ 'd::pure"
  assumes P: "finite (supp P)" 
  and     Q: "finite (supp Q)"
  shows "(FRESH x. binop (P x) (Q x)) = binop (FRESH x. P x) (FRESH x. Q x)"
proof -
  from assms have "finite (supp (P, Q))" by (simp add: supp_Pair)
  then obtain a::'a where "atom a ♯ (P, Q)" by (rule obtain_fresh') 
  then show ?thesis
    by (simp add: pure_fresh)
qed

lemma FRESH_conj_iff:
  fixes P Q :: "'a::at ⇒ bool"
  assumes P: "finite (supp P)" and Q: "finite (supp Q)"
  shows "(FRESH x. P x ∧ Q x) ⟷ (FRESH x. P x) ∧ (FRESH x. Q x)"
using P Q by (rule FRESH_binop_iff)

lemma FRESH_disj_iff:
  fixes P Q :: "'a::at ⇒ bool"
  assumes P: "finite (supp P)" and Q: "finite (supp Q)"
  shows "(FRESH x. P x ∨ Q x) ⟷ (FRESH x. P x) ∨ (FRESH x. Q x)"
using P Q by (rule FRESH_binop_iff)


section {* Automation for creating concrete atom types *}

text {* At the moment only single-sort concrete atoms are supported. *}

ML_file "nominal_atoms.ML"


section {* Automatic equivariance procedure for inductive definitions *}

ML_file "nominal_eqvt.ML"

end